

1

2

Table of Contents
Service Description 3

Engagement Objectives 3

Process and Methodology 3

Scoping and Rules of Engagement 6

Executive summary 7

[CLIENT] Risk Rating 7

Summary of Findings 8

Summary of Weaknesses 8

External Testing Findings 18

Finding: Critical ï Easily Guessable Passwords 18

Finding: Medium ï WordPress User Enumeration 19

Finding: Medium ï IKE Aggressive Mode Supported 20

Internal Network Attack Path 21

Internal Network Pen Testing Findings 28

Finding: Critical ï Service Principal Name Misconfiguration 28

Finding: Critical ï Service Account Misconfigurations 30

Finding: Critical ï Weak Password Policy 33

Finding: Critical ï Apache HTTPD vulnerable version 34

Finding: Critical ï Apache Tomcat vulnerable version 35

Finding: Critical ï NGINX 1-Byte Memory Overwrite RCE 36

Finding: High ï ESXI 6.5 / 6.7 XSS 36

Finding: High ï Overly Permissive Active Directory Rights 36

Finding: High ï Microsoft AppLocker Not Enabled 39

Finding: High ï Lack of LDAP Signing and Channel Binding 40

Finding: High ï Disable NTLM Authentication 41

Finding: High ï Windows Default IPv6 Configuration 41

Finding: High ï Windows Insecure Name Resolution 42

Finding: High ï Web Proxy Auto-Discovery Enabled 43

Finding: Medium - SMB Signing Not Enabled 44

Finding: Low ï Enable LSA Protection 45

Finding: Low ï Idle RDP Sessions 46

3

Engagement Overview

White Knight Labs (WKL) conducts penetration tests, adversary emulation, and red team

engagements. At WKL, we specialize in manual assessments that go beyond basic

automated tests to identify real attack vectors that can be used against your application or

environment.

With decades of combined offensive experience, White Knight Labs is at the forefront of

application security, cloud security, and penetration testing. With a veteran team of subject

matter experts, we staff experts that are authorities in their field.

Service Description

This security assessment focused on emulating real-world attacks using the same

techniques as malicious actors. The [CLIENT] network security assessment focused on the

most likely and most dangerous attacks against the internal and external network, as well as

a basic physical security assessment.

Engagement Objectives

WKLôs assessor used the results of automated scanning tools, paired with their expert

knowledge and experience to conduct a manual security analysis of the [CLIENT] network.

Our assessor attempted to exploit and gain unauthorized access to data through

misconfigurations and exploits. The detailed results of the vulnerability scanning, manual

testing, and active exploitation techniques are detailed in this report.

Process and Methodology

White Knight Labsô penetration testing methodology is based on the Penetration Testing

Execution Standard (PTES) framework and combines the results from industry-leading

testing tools with manual testing to enumerate and validate security vulnerabilities, find

attack vectors, configuration errors, and business logic flaws. While automated tools check

for known vulnerabilities, they are incapable of assessing real business risk or determining

the extent of possible exploitation. WKL security testing helps improve the company security

posture by lowering the risk of unauthorized access and sensitive data breaches, improving

productivity, protecting the company brand from cyber-attacks, and maximizing the ROI from

network devices. The following penetration testing methodology used by WKL red team

assessment team is illustrated below:

4

1. Open-Source Intelligence Gathering

Information gathering consists of Google search engine reconnaissance, server
fingerprinting, network enumeration, and more. Information gathering efforts result in a
compiled list of metadata and raw output with the goal of obtaining as much information
about the network's makeup as possible. Reconnaissance includes initial device
footprinting, service enumeration, and operating system and application fingerprinting.
The purpose of this step is to collectively map the in-scope environment and prepare for
identified vulnerabilities.

During the Information Gathering phase, WKL will:

¶ Use discovery tools to passively uncover information about the network

¶ Perform network fingerprinting and enumeration in order to identify components,
devices and operating systems

¶ Actively scan for available services and vulnerabilities and develop a test plan for
latter
phases in the security assessment

¶ Generate user lists, search historical records, scrape data from the web, and
accessing
breach data that could be used against the company network

2. Reconnaissance

With the information collected from the previous step, security testing transitions to
identifying vulnerabilities in the network. This typically begins with automated scans
initially but quickly morphs into manual testing techniques using more pointed and direct
tools. During the active reconnaissance step, assets are identified and categorized into
threat categories. These may involve sensitive information, trade secrets, financial
documents, etc.

5

During this phase, White Knight Labsô engineers will:

¶ Use open-source, commercial, and internally developed tools to identify and confirm
well-known vulnerabilities

¶ Spider the in-scope network device(s) to effectively build a map of each of the
operating
systems, open ports and services, and areas of interest

¶ Use discovered sections, features, and capabilities to establish threat categories to
be used for more manual/rigorous testing (i.e., default admin credentials, session
hijacking, known vulnerabilities in out-of-date components)

¶ Build the network's threat model using the information gathered in this and the
previous phase to be used as a plan of attack for later phases of the assessment

¶ Use previously discovered information targeting users against mapped external
services such as Office 365

3. Vulnerability Analysis

The vulnerability analysis phase involves the documentation and analysis of
vulnerabilities discovered as a result of the previous network penetration testing steps
used during the active reconnaissance phase. This includes the analysis of the various
security tools and manual testing techniques. At this point, a list of attractive
vulnerabilities, suspicious services, and items worth researching further has been
created and weighted for further analysis. In essence, the plan of attack is developed
here.

4. Exploitation and Lateral Movement

Unlike a vulnerability assessment, a network penetration test takes the engineering a bit
further specifically, by way of exploitation. Exploitation involves carrying out the
vulnerability's exploit (i.e., buffer overflow) to be certain if the vulnerability is truly
exploitable. During the Exploitation phase of a penetration test, WKLôs engineers will
attempt to gain access to the devices, networks, or applications through the bypassing of
firewalls and other security controls and by the exploitation of vulnerabilities in order to
determine their actual real-world risk. Throughout this step, we perform several manual
tests simulating real-world attacks that are incapable of being performed through
automated means. This phase of a penetration test consists of heavy manual testing
tactics and is often the most time-intensive phase. Exploitation may include but is not
limited to credential harvesting/guessing, network sniffing, leveraging known
vulnerabilities in outdated software.

As part of the Exploitation phase, WKL will:

¶ Attempt to manually exploit the security issues identified in the previous phase to
determine the level of risk and level of exploitation possible

¶ Capture evidence to provide proof of exploitation (images, screenshots, configs)

¶ Attempt to escalate privileges and move laterally towards valuable data or
organization
defined targets

¶ Attempt to exploit different types of vulnerabilities and security weaknesses inside the
network that affect a positive security stance

5. Assessment Reporting

6

The reporting step is intended to compile, document, and risk rate findings and generate
a clear and actionable report, complete with evidence, for the project stakeholders. The
report is delivered via encrypted transmission from WKL. A virtual meeting will be held
with [CLIENT] to discuss report findings. At WKL, we consider this phase to be the most
important and we take great care to ensure we've communicated the value of our service
and findings thoroughly.

Scoping and Rules of Engagement

While malicious actors have no limits on their actions, WKL understands the need to scope

assessments to complete the assessment in a timely manner and protect third parties not

participating in the engagement. The following limitations were placed upon this

engagement:

External Penetration Test - The goal of external penetration testing is to discover hosts
(or cloud/application accounts) that are accessible via open ports, protocols, and services,
facing the internet and exploit any security holes/processes that are identified. One
objective is to gain access to the internal network from the internet.

Internal Penetration Test - With internal penetration testing, the goal is to assess the
ability of an attacker that already has access to the internal network to move laterally, and
discover further opportunities for exploitation. This would include escalating privileges
and seeking valuable data on the target network (the crown jewels). WKL provided
[CLIENT] a Virtual Machine that provided WKL internal access to the internal [CLIENT]
network.

Wireless Penetration Test - Wireless penetration testing involves identifying and
assessing the connections between all devices connected to the organizationôs Wi-Fi
network. These devices include laptops, tablets, smartphones, and any other "Internet of
Things" (IoT) devices. Wireless Penetration Testing also includes some elements of an
audit,
ensuring the wireless network is in-line with industry standards. In case of wireless
networks, vulnerabilities are most often found in Wi-Fi access points due to insufficient
Network Access Controls and lack of MAC filtering.

White Knight Labs conducted the penetration test in two parts:

Black -Box Testing - In a black-box engagement, the consultant does not have access to
any internal information and is not granted internal access to the client's applications or
network. It is the job of the consultant to perform all reconnaissance to obtain the
sensitive knowledge needed to proceed, which places them in a role as close to the
typical attacker as possible.

White -Box Testing - In a white-box engagement the security consultant is allowed to have
complete open access to applications and systems. This allows consultants to view
source code and be granted high-level privilege accounts to the network. The purpose of
white-box testing is to identify potential weaknesses in various areas such as logical
vulnerabilities, potential security exposures, security misconfigurations, poorly written
development code and lack-of-defensive measures.

7

Executive summary

White Knight Labs conducted a security assessment of the [CLIENT] internal network, and

external public-facing infrastructure. This test was performed to assess the defensive

posture of [CLIENT]ôs information technology and provide security assistance through

proactively identifying vulnerabilities, validating their severity, and providing remediation

steps to [CLIENT].

WKL reviewed the security of [CLIENT] and has determined a moderate risk of compromise

from external attackers, as shown by the vulnerabilities detailed in this report. The detailed

findings and remediation recommendations for these vulnerabilities may be found later in

this report.

[CLIENT] Risk Rating

White Knight Labs calculates the risk to [CLIENT] based on exploitation likelihood (ease of

exploitation) and potential impact (potential business impact to the environment).

Overall Risk Rating: __ High

KEY

__ Informational

__ Low

__ Moderate

__ High

__ Critical

Exploitation

Likelihood

Potential Impact

8

Summary of Findings

While White Knight Labs was tasked with finding issues and vulnerabilities in the [CLIENT]

internal network and public infrastructure, it is useful to know when positive findings appear.

Understanding the strengths of [CLIENT]ôs information technology can reinforce security

best practices and provide strategy and direction toward a robust defensive posture. The

following trait was identified as a strength:

¶ Minimal external attack surface

¶ Limited access to servers from subnets

¶ Limited ports open across multiple servers

Summary of Weaknesses

WKL discovered and investigated multiple critical and high-level vulnerabilities during its

assessment of [CLIENT]. These vulnerabilities are categorized into general weaknesses

below:

¶ Active Directory misconfigurations

¶ Patch Management

¶ Least Privilege Access Model

¶ Stronger network configurations

¶ Password Policy

Risk Vulnerability

Critical Easily Guessable Passwords

Critical Service Principal name Misconfiguration

Critical Service Account Misconfigurations

Critical Weak Password Policy

Critical Apache HTTPD version multiple vulnerabilities

Critical Apache Tomcat version multiple vulnerabilities

Critical NGINX 1-Byte Memory Overwrite RCE

High ESXI 6.5 / 6.7 XSS

High Overly Permissive Active Directory Rights

High Microsoft AppLocker Not Enabled

High Lack of LDAP Signing and Channel Binding

High Disable NTLM Authentication

High Windows Default IPv6 Configuration

High Windows Insecure Name Resolution

High Web Proxy Auto-Discovery Enabled

Medium WordPress User Enumeration

Medium SMB Signing Not Enabled

Medium IKE Aggressive Mode Enabled on VPN

Low Enable LSA Protection

Low Idle RDP Sessions

9

External Attack Path

White Knight Labs conducted external network testing using secured WKL attack
infrastructure. WKL was provided access to the external IP ranges. WKL confirmed access
to the external IP addresses from WKL attack infrastructure and began testing the [CLIENT]
external network. WKL began testing by performing Open-Source Intelligence (OSINT)
gathering against the organization. DNS information was gathered to determine publicly
available information about [CLIENT] external attack surface. With an external surface map
of [CLIENT] created, WKL began to perform a manual analysis of the external assets of the
[CLIENT] organization.

Figure 1 An example of a DNS visualization of [CLIENT]
WKL then moved onto creating a user list that could be used against [CLIENT] email or VPN
solutions. WKL searched LinkedIn and Dehashed to generate a user list that could be used
to gain access to [CLIENT] internal network resources. As shown in the following example
WKL found 900+ results on LinkedIn for employees listed under the company name
[CLIENT]:

Figure 2 LinkedIn results for [CLIENT]

10

WKL extracted the names of employees that were listed under the LinkedIn organization
page. WKL needed to determine the correct email format; this was done with Dehashed, if
previous breach data was found. In the following example, WKL recovered about 1200+
email addresses from previous breach data:

 Figure 3 Dehashed results for [CLIENT]

As shown in the following example, WKL searched the previous breach data to find
multiple emails showing the correct format as firstinitial.lastname followed by the domain
using the format of ñ{FirstLetterofFirstName}.{LastName}@fakecompany.com ò:

 Figure 4 Example of email format for [CLIENT]

Once WKL determined the correct email address format, WKL exported the breached data
email addresses and combined the data with users collected from LinkedIn. This allowed
WKL to construct a list of 700+ unique email addresses that could be used in a password
spray attack. WKL moved on to conducting the password spray attack; common weak
passwords were generated using common dictionary words as well as months, years,
seasons, numbers, and the organization name. In the following example, WKL guessed
multiple accounts using the password ñWinter2020ò. The ñ401ò error as shown below
indicates that MFA is enabled for the user account:

Figure 5 WKL 'password spraying' the [CLIENT]

WKL determined that MFA was enabled for most of the [CLIENT] users. WKL authenticated
with multiple [CLIENT] users and was presented with multiple MFA options. In the following
example, WKL was presented with the option to send out a push notification to the userôs
cell phone:

11

Figure 6 Okta MFA was enabled

With MFA determined enforced for all users, WKL moved on to determining which users had
MFA enabled but not configured. This is a common issue with OKTA instances as the
organization can enforce MFA but if users do not configure MFA the account is still usable
and accessible without the need for MFA. WKL used a Python script that checked MFA
options per each compromised account. The script uses Selenium and the Chrome browser
to login to each account to determine if any MFA options are enabled. WKL determined that
five (5) users did not have MFA configured, the following screenshot shows the list of the 5
users:

Example of [CLIENT] accounts without MFA configured

WKL logged into the OKTA page with the user's credentials. This presented a wealth of
information such as department and division. The following screenshot shows the [CLIENT]
usersô information displayed by OKTA.

12

 Figure 7 OKTA information presented post authentication

After authenticating, WKL changed the MFA settings for the account and set up SMS MFA.
WKL added an engineerôs phone number and followed the configuration process until SMS
verification was completed. The following example shows the SMS MFA configured for the
[CLIENT] user account:

 Figure 8 Configuring SMS MFA for the user

13

With SMS MFA configured, WKL attempted to access the [CLIENT] VPN. Multiple
challenges were faced here. First, WKL was not able to use a default profile to connect to
the [CLIENT] VPN. This was most likely due to multiple groups that were configured to
provide access to different regions. WKL was able to download an example profile found
online. WKL then started to guess the group name which was [CLIENT] and then WKL
added the VPN DNS name to the profile ñvpn.******ò. With this configuration, WKL was able
to get a proper prompt to access the [CLIENT] VPN server. The following example shows
the VPN configuration that was used to gain access to the [CLIENT] VPN:

Figure 9 Example of VPN configuration profile

With the correct configuration, WKL was now prompted for a MFA token over SMS. WKL
received this token and authenticated to the [CLIENT] VPN with the userôs account:

Figure 10 WKL engineer receiving the SMS MFA prompt

Once the SMS code was enabled, WKL was able to confirm that VPN access was obtained
by checking to see if the Domain Controllers were accessible from the VPN connection. The
following example shows the DNS query after a successful VPN connection was made:

14

 Figure 11 WKL successfully authenticating to the Cisco AnyConnect VPN

With VPN access, WKL moved onto determining next steps in gaining administrative access
over the [CLIENT] domain. WKL executed Bloodhound which performs LDAP queries and
maps out the Active Directory network looking for attack paths through misconfigurations or
abusive permissions. Bloodhound was executed under the [CLIENT] user account. WKL
determined that the [CLIENT] user was part of the [CLIENT] group which provided local
admins access to 12+ hosts. The following example shows the Bloodhound data and the
local admin access to the 12+ hosts under the context of the domain user:

 Figure 12 Using Bloodhound to determine the user's privileges within Active Directory

With an attack path identified, WKL engineer moved onto determining if access to the hosts
were possible from the VPN. WKL then port scanned and identified that most hosts were
accessible over SMB (port 445). The following example shows the SMB port 445 open for
the domain-joined computer from the VPN:

15

Figure 13 Running a port scan from the VPN connection

WKL created a payload that was used to bypass AV and EDR to gain a C2 connection back
to WKL team server which could be used to execute commands on the host or pivot to
additional hosts on the network. WKL engineer started a netonly session under the context
of the user:

Figure 14 Starting a process called 'exporer.exe' under a domain user from a non-domain joined host

WKL assessor started the explorer.exe process under a domain session which would allow
for the application to authenticate from a non-domain joined machine. WKL accessed the C$
drive and uploaded a malicious executable under the ñC:\Tools\Printò directory on the host:

Figure 15 Uploading malicious binary to the host

Once the file was uploaded, WKL needed to execute the malicious executable over SMB

port 445. WKL decided to start the executable as a service. WKL engineer modified the

ñedgeupdateò service to point to the malicious executable as shown in the following

screenshot:

16

Figure 16 Modifying the edgeupdate service to point at the malicious binary

After the engineer started the service, WKL received a connection back to WKL C2 team

server as shown in the screenshot below:

 Figure 17 client machine connecting to WKL's C2 team server

Once a C2 connection was made, WKL assessor created a SOCKS proxy, which allowed for
network access to the internal network. This was done to help pivot into the network with
less restrictions from the VPN. WKL then dumped the LSA secrets from the [CLIENT] host:

Figure 18 Dumping LSA (Local Security Authority) from host machine

WKL recovered multiple DCC2 hashes. WKL copied the hashes offline and attempted to
crack them with the offline WKL password cracker. The userôs hash with a password of
ñ***********ò as shown in the following screenshot:

17

 Figure 19 DCC2 password hash was cracked for the [CLIENT] user

WKL authenticated with the [CLIENT] user account and ran Bloodhound to determine if any
attack paths were available under the context of that user. WKL determined that multiple
attack paths were available under the context of the [CLIENT] user account. The following
screenshot shows the group [CLIENT] group having local admin access to host where a
current Domain Admin had a valid session:

Figure 20 Identifying an attack path for the [CLIENT] user

WKL targeted the [CLIENT] machine and created a C2 connection back to the C2 team
server using similar methods described above. Once a C2 connection was established, WKL
executed a memory dump to get a dump of the LSASS process. WKL then obtained a NT
hash for the user as shown in the screenshot below:

18

 Figure 21 Dumping LSASS secrets to obtain the NTLM hash for a Domain Admin

WKL used a PTH (Pass-the-Hash) attack to determine that the NT hash was valid by
targeting the [CLIENT] Domain Controller. The screenshot below shows WKL engineer
verifying that the Domain Admin NTLM hash can authenticate to the Domain Controller,
which means that administrative access has been obtained against the [CLIENT] domain:

 Figure 22 Passing the Domain Admin NTML hash to the Domain Controller for authentication

WKL completed the external network test of the [CLIENT] network. WKL successfully
password sprayed multiple credentials resulting in authentication to the accounts via OKTA.
WKL accessed emails and documents for multiple users. WKL modified MFA options for
multiple users and obtained VPN access. WKL found excessive permissions set on the
compromised users which resulted in WKL gaining access to multiple hosts and access to a
Domain Admin user hash. After the Domain Adminôs NTLM hash was compromised, it was
used to access the Domain Controller for the [CLIENT] network.

External Testing Findings

Finding: Critical ï Easily Guessable Passwords

Weak passwords refer to any passwords that can easily be guessed. Examples would
include variations of a username, company name, season and year, or simply common
words such as ñpassword.ò Even if an account lockout policy is enforced, most likely the
lockout resets after a period. If an attacker obtains a large list of users, over time many
common passwords can be attempted.

19

White Knight Labs utilized Open-Source Intelligence (OSINT) gathering techniques to gather
many usernames for employees. After compiling a list of users and passwords that meet
common complexity requirements, one password was attempted per each user on the
Virtual Private Network (VPN) authentication portal. By using this method, the penetration
tester successfully guessed weak credentials for several users.

 Figure 23 'Password spraying' an easily guessable credential

Recommendations:

WKL suggests that a third-party solution be integrated which prevents users from picking
weak options when changing credentials. For example, solutions exist that will prevent
common English words from being used in passwords. This approach can greatly help
minimize employees picking easily guessable passwords. Consider having employees use
passphrases, such as ñthe quick red fox jumped over the slow brown dogò instead of
traditional passwords that are hard to remember. By using this method, it is easier for
employees to remember their password, and the password ends up being many characters
longer than the minimum required, which can help mitigate password cracking attacks.

Implementing a full Privileged Access Management (PAM) solution would help mitigate
credential abuse by attackers. PAM solutions perform credential vaulting, privileged session
management, and user behavior/privileged threat analytics. All these PAM elements make it
more challenging for attackers to abuse credentials without detection.

Finding: Medium ï WordPress User Enumeration

Review of www.*********.org revealed a backend WordPress login panel at
*****.org/wp-login.php. Using a process of elimination technique, usernames can be
enumerated in the current WordPress configuration. When entering a false username, an
óUnknown usernameô error is displayed but when entering a valid username such as óadminô,
a different error is displayed which states óThe password you entered for the username
admin is incorrectô.

20

 Figure 24 Enumerating Word Press users

Although time consuming due to rate-limiting restrictions, it is possible to brute force this
panel over an elongated period once a username is gathered.

Recommendations:

Change the default URL for the login page /wp-login.php as well as implement two-factor
authentication if not already implemented. Generalize failed login attempts for all users so
that it is not possible to distinguish errors based on verbosity.

Finding: Medium ï IKE Aggressive Mode Supported

The VPN endpoints identified above were found to support the Internet Key Exchange (IKE)
protocol with Aggressive Mode Pre-Shared key (PSK) handshaking enabled. The
configuration is not ideal, because the handshaking process exposes a hashed version of
the PSK to attackers. If an attacker can crack the PSK offline, they are a step closer to
compromising the VPN connection.

Recommendations:

WKL recommends that Aggressive Mode be disabled and only Main Mode allowed. Main
Mode authentication does not expose a hashed version of the PSK to attackers during the
authentication process. If using a PSK cannot be avoided, use very strong keys. Also
consider restricting access to VPN endpoints to specific allowed IP addresses only.

21

Internal Network Attack Path

WKL assessors conducted internal network testing using an internal dropbox deployed by

[CLIENT]. On [date], White Knight Labs confirmed access to WKL dropbox from their attack

infrastructure and began testing the internal [CLIENT] network.

WKL started the internal network penetration test by launching scans against the in-scope

range of hosts. WKL used the internal dropbox to run these scans. WKL used scanning tools

such as Nmap and Nessus in order to develop a better understanding of the internal network

environment and to identify common vulnerabilities that are easily detected. During the

scanning process, WKL found a vulnerable vCenter server running an outdated version that

is vulnerable to the 2021 Logj4 vulnerability.

WKL downloaded the public exploit for CVE-2021-442281 and compiled it. WKL then

targeted the [CLIENT] host with the exploit. The following example shows the execution of

the exploit against the [CLIENT] host which was done to gain a reverse shell under the root

account:

Figure 25 exploiting the Log4j vulnerability to gain a reverse shell

WKL successfully received a reverse shell call back over port 4444 under the context of the

root user account. The following example shows the reverse shell callback with code

execution on the [CLIENT] host:

1 https://github.com/puzzlepeaches/Log4jCenter

22

Figure 26 - Example of reverse shell obtained from Log4j exploit

With root access, WKL moved onto gaining access to the GUI of the vCenter server. This

could be done using a known SAML vulnerability2 by getting the cookie for the administrator

account. WKL used the built-in Curl tool to upload a file to the internal dropbox from the

[CLIENT] host. The data.mdb file was exfiltrated to gain access to sensitive information

including the administrator cookie session information in cleartext. The following example

shows the execution of Curl to upload the file to the internal dropbox:

Figure 27 - Example of data.mdb file upload to internal dropbox

With the data.mdb file exfiltrated, WKL moved onto extracting the VSPHERE-UI cookie from

the file. The following example shows the extraction of the cookie:

2 https://github.com/horizon3ai/vcenter_saml_login

23

Figure 28 - Example of extraction of Admin cookie

With access to a valid cookie, WKL setup a socks proxy to access the GUI of the vCenter

host. With a proxy setup a local browser could be used to access the webpage of the

vCenter server. Once a successful connection was made over the proxy, WKL added the

cookie to the current browser session and then accessed the GUI using

https:// CLIENT.local/ui/ . The following example shows the successful login of the

Administrator account by using the cookie obtained from the data.mdb file:

Figure 29 - Example of GUI access to VCenter

With administrative access to the vCenter server, WKL began browsing datastores to

determine which virtual machines would be worth downloading to gain administrative access

to the [CLIENT] network. WKL found that the [CLIENT] host was hosted and accessible by

24

the vCenter server. WKL targeted the VMDK of the [CLIENT host] and began to download

the VMDK from the vCenter host as shown in the following example:

Figure 30 - Example of VMDK access in VCenter

Once the VMDK was downloaded, WKL mounted and extracted the SAM and registry files

from the OS. This allowed WKL to exfiltrate sensitive information such as the local admin

and any LSA secrets that may be contained within the OS during configuration. WKL then

performed a LSA secrets dump3 and obtained cleartext credentials as shown in the following

example:

Figure 31 - Example of cleartext credentials found from LSA Secrets dump

3 https://attack.mitre.org/techniques/T1003/004/

25

WKL determined that the cleartext password was for the [CLIENT] user. WKL then tested

the login found with a tool called CrackMapExec4 against the [CLIENT] host and determined

that the user credentials found were valid.

Figure 32 - Example of [CLIENT] user account access

WKL then performed the same LSA secrets dump against the [CLIENT] host using

CrackMapExec which outputted the confirmed cleartext password. This was done to

determine if any additional cleartext credentials could be found. The following example

shows the LSA dump using CrackMapExec:

Figure 33 - Example of cleartext password for [CLIENT] user

With access to a valid account, WKL moved onto determining what level of access the

[CLIENT] user account had. WKL used the [CLIENT] user account to execute BloodHound5

to get a better understanding the of the [CLIENT] Active Directory. WKL determined that the

[CLIENT] user account was part of the Domain Admins user group as shown in the following

example:

4 https://github.com/byt3bl33d3r/CrackMapExec

5 https://github.com/BloodHoundAD/BloodHound

26

Figure 34 - Example of Bloodhound data for [CLIENT] domain

With Domain Admin access for the [CLIENT] user account, WKL tested the account against

the [CLIENT] Domain Controller to confirm administrative access. WKL confirmed that the

[CLIENT] user account had administrative access to the [CLIENT] DC as shown in the

following example:

Figure 35 - Example of confirmed Domain Admin access with [CLIENT] user

With Domain Admin access confirmed, WKL used WmiExec 6 to execute a command on the

[CLIENT] Domain Controller host to dump the NTDS7. The following example shows the

6 https://attack.mitre.org/techniques/T1047/

7 https://attack.mitre.org/techniques/T1003/003/

27

ntdsutil command being used to create a snapshot of the Active Directory database on the

[CLIENT] DC host:

Figure 36 - Example of NTDS.dit dump on Domain Controller

With the snapshot created, WKL used a tool called SMBClient 8 to exfiltrate the NTDS dump

from the [CLIENT] DC host. Once the NTDS.dit file was exfiltrated, WKL extracted the

hashes using secretsdump 9 to get access to all user hashes for the [CLIENT] domain. The

following example shows part of the NTDS dump:

Figure 37 - Example of dumping NTDS from exported NTDS.dit

8 https://attack.mitre.org/techniques/T1021/002/

9 https://github.com/SecureAuthCorp/impacket/blob/master/examples/secretsdump.py

28

On [date], WKL completed the internal network test of the [CLIENT] network. WKL

successfully gained administrative privileges on the [CLIENT] Active Directory network which

allowed WKL to access multiple hosts across the network, including hosts containing

sensitive information. During the test, WKL performed a full Windows NT Directory Services

(NTDS) dump to audit the password usage habits of the users within the [CLIENT] network.

WKL successfully cracked over 30% of user account passwords within the [CLIENT] domain.

Internal Network Pen Testing Findings

Finding: Critical ï Service Principal Name Misconfiguration

Services in Windows networks are usually 'kerberized' (i.e. support Kerberos authentication)

and are registered under a security principal (user or computer account) as a Service

Principal Name (SPN) on the Active Directory. This enables Kerberos clients to uniquely

identify the instance of the service and request a Kerberos service ticket (also called ticket

granting service or TGS) to it. This ticket will be encrypted using the service's long-term

secret key derived from the security principal's password.

Kerberos only deals with authentication and each service is responsible for authorizing

clients. Any domain user can request a Kerberos service ticket (TGS) from a Domain

Controller to any service even if it doesn't actually have permissions or have the intention to

access the service. In fact, the service (or server) doesn't have to be available to retrieve a

valid ticket. Using common offensive security tooling such as Rubeus, it is easy to obtain a

service ticket for a service instance by its SPN.

SPNs associated with computer accounts are not feasible to crack because they use

rotated, complex random-generated passwords by default. However, user accounts are

likely to contain guessable (non-random, relatively short) passwords. Service accounts are

often privileged, and the passwords are set to never expire. Once a user with an SPN has

been identified, it is easy to check the group membership of the user and determine if the

user is a member of a sensitive group (such as Domain Admins).

WKL identified that many user accounts had SPNôs set within the [CLIENT] network. The

following example shows the BloodHound data showing a subset of the users found with

SPNôs:

https://github.com/GhostPack/Rubeus

29

Figure 38 - Example of user accounts with SPN's

WKL identified multiple accounts with administrative privileges that were set with a SPN

such as the [CLIENT] user. Currently the [CLIENT] user is part of the Domain Admins group

which is considered a bad practice with service accounts having SPNôs set.

Recommendations:

WKL recommends reviewing all Service Principal Name (SPNs) set on all accounts within

the Active Directory network. Service accounts should only be set with a proper SPN that

follows the least privilege model. Service accounts should follow a password rotation policy

along with a strong password applied during the rotation.

Accounts that have a SPN set should not have administrative privileges (such as the Domain

Admins). Accounts that require a SPN should follow the least privilege model in Active

Directory. Additionally, all vendor-based service accounts should be reviewed to determine if

the vendor has assigned the proper security permissions.

For more information please reference:

¶ https://thebackroomtech.com/2018/08/21/explanation-of-service-principal-names-in-

active-directory/

¶ https://www.ired.team/offensive-security-experiments/active-directory-kerberos-

abuse/abusing-kerberos-constrained-delegation

¶ https://stealthbits.com/blog/resource-based-constrained-delegation-abuse/

https://thebackroomtech.com/2018/08/21/explanation-of-service-principal-names-in-active-directory/
https://thebackroomtech.com/2018/08/21/explanation-of-service-principal-names-in-active-directory/
https://www.ired.team/offensive-security-experiments/active-directory-kerberos-abuse/abusing-kerberos-constrained-delegation
https://www.ired.team/offensive-security-experiments/active-directory-kerberos-abuse/abusing-kerberos-constrained-delegation
https://stealthbits.com/blog/resource-based-constrained-delegation-abuse/

30

Finding: Critical ï Service Account Misconfigurations

Service accounts are a special type of non-human, privileged account used to execute

applications and run automated services, virtual machine instances, and other processes.

Service accounts can be privileged local or domain accounts, and in some cases, they may

have domain administrative privileges. This high level of privilege facilitates the smooth

operation of many IT workflows, but a single service account can easily be referenced in

many applications or processes. This interconnection, along with the critical nature of their

usage, makes them very difficult to manage.

Service accounts are especially important because they are often installed under the intrinsic

local system account and essentially have local administrator privileges. These privileges

could potentially give account access to domain credentials and allow them to laterally move

within your network. To make matters worse, service account passwords are hardly ever

changed or rotated for fear of disruption.

If attackers access a service account, they can indirectly access all the resources to which

that service account has access. Users given the role of a service account user can use

those credentials to access all resources tied to the account, and potentially impersonate the

service account to perform many tasks using those elevated roles and permissions.

Essentially, an attacker can go completely unnoticed within your network and steal or

manipulate your Active Directory (AD) domain.

WKL identified that multiple service accounts are not following a password rotation policy.

The following example shows the [CLIENT] user account set with a password that was last

changed in 2009:

31

Figure 39 - Example of SQLAdmin user not following password rotation policy

Additionally, WKL found that the [CLIENT] service account had local admin access to over

2900+ hosts within the network.

During analysis of multiple service accounts within Active Directory environments, WKL

assessors identified common service account issues:

¶ Giving excessive privileges, or over-privileged service accounts

¶ Failing to rotate or change service account passwords

¶ Leaving default passwords in place

¶ Using the same account for multiple services

32

¶ Using poor service account naming conventions

¶ Sharing an account between services and people

¶ Using the same password for multiple accounts

¶ Never decommissioning service accounts when they are no longer needed

Recommendations:

Service accounts should be carefully managed, controlled, and audited. In most cases, they

can also be associated back to an identity as an owner. However, service accounts should

not have the same characteristics as a person logging on to a system. They should not have

interactive user interface privileges nor the capability to operate as a normal account or user.

Depending on the operating system or infrastructure, this could encompass restricting

everything from executing a batch process, to not having a proper shell assigned to the

account.

WKL recommends implementing the following procedures when creating service accounts:

ǒ Keep access limited - Ensure you only allocate AD service accounts the minimum

privileges they require for the tasks they need to carry out and don't give them any

more access than is necessary.

ǒ Create service accounts from scratch - Don't create service accounts in Active

Directory by copying old ones as you might accidentally be copying from a service

account with much higher privileges than you need.

ǒ Don't put service accounts in built -in privileged groups - Putting service

accounts in groups with built-in privileges can be risky because each person in the

group will have access to the service account's credentials. If there's account misuse,

it can be hard to figure out who the offender is. If you need a service account for a

privileged group, create a new group with the same privileges and allow access only

to the service account.

ǒ Disallow service account access to important objects - Use an access control list

to protect sensitive files, folders, groups, or registry objects from misuse by AD

Service Accounts.

ǒ Remove unnecessary rights - Denying nonessential user rights is helpful to keep

security measures strong.

ǒ Set access by using the "Log On To" feature - When you create a service account

in Active Directory, you can allow it to only log on to certain machines to protect

sensitive data.

ǒ Limit time frames - You can add extra security by configuring AD service accounts

to be allowed to log on only at certain times of day.

33

ǒ Control password configuration - You can set a service account so the user can't

change their own password. You can also set it so the account can't be delegated to

someone else. This ensures the administrator controls the password and nobody

other than authorized users have access to the account.

ǒ Enable auditing - Enable auditing for all service accounts and related objects. Once

auditing is enabled, regularly check the logs to see who's using the accounts, when,

and for what purposes.

ǒ Implement access rights management software - Carefully managing your Active

Directory service accounts is crucial to preventing misuse of broad access and

privileges. An access rights management tool can be beneficial to ensure user

accounts are set up and managed with appropriate permissions and access.

For more information please reference:

¶ https://foresite.com/active-directory-security-best-practices-privileged-accounts/

¶ https://www.lepide.com/blog/nine-tips-for-preventing-misuse-of-service-accounts-in-

active-directory/

Finding: Critical ï Weak Password Policy

WKL discovered a weak domain account password policy for the domain. The 12-character

password length allowance is a serious issue because this length of password makes brute-

force attacks much simpler and oftentimes more successful. When the password hash of a

12-character password is retrieved and a cracking attempt is made, the likelihood of the

password being cracked is far greater than a lengthier password. The entire sequence of

possible passwords within the alphanumeric range for a 12-character password can be brute

forced within a few days.

A weak password policy allows attackers to easily perform brute force or spraying attacks

against domain accounts, in addition to greatly increasing the likelihood that an attacker will

be able to successfully crack password hashes. This weak policy made cracking passwords

very easy during the testing period.

Recommendations:

WKL recommends that [CLIENT] adopt a domain-wide password policy with the following

characteristics:

¶ 15+ characters minimum length

¶ Password complexity enabled

¶ 24 previous passwords remembered

¶ 5 invalid logon attempts before lockout

https://foresite.com/active-directory-security-best-practices-privileged-accounts/
https://www.lepide.com/blog/nine-tips-for-preventing-misuse-of-service-accounts-in-active-directory/
https://www.lepide.com/blog/nine-tips-for-preventing-misuse-of-service-accounts-in-active-directory/

34

¶ Indefinite lockout duration (until unlocked by administrator)

Finding: Critical ï Apache HTTPD vulnerable version

Multiple out of date versions of Apache HTTPD were detected in the environment which are

known to contain critical and/or high rated vulnerabilities. Three of these instances were

observed to be running Apache version 2.2 which has been end-of-life since December

2017. There may be additional vulnerabilities in version 2.2 which have not been properly

reported and/or investigated as noted by the Apache project.

Figure 40 - Example of service with vulnerable version based on reported HTTP response Server header.

Recommendations:

WKL recommends upgrading to the latest stable version of Apache HTTPD which as of this

reporting is 2.4.53. Implement security monitoring and patching procedures to detect and

update Apache as new versions become available and more importantly as security

vulnerabilities are documented.

References:

¶ https://httpd.apache.org/security/vulnerabilities_22.html

¶ https://httpd.apache.org/security/vulnerabilities_24.html

¶ https://downloads.apache.org/httpd/CHANGES_2.4

https://downloads.apache.org/httpd/CHANGES_2.4

35

Finding: Critical ï Apache Tomcat vulnerable version

Multiple outdated versions of Apache Tomcat were detected in the environment which are

known to contain critical and/or high rated vulnerabilities including the potential for remote

code execution. Many of the versions detected were observed to be running a Tomcat

version which is past end-of-life.

Figure 41 - Example of outdated Tomcat - version 7.0.72

Recommendations:

WKL recommends upgrading to the latest stable version of Apache Tomcat based on the

major version desired and/or needed for other dependencies as noted by Apache project.

See references below.

References:

¶ https://tomcat.apache.org/

¶ https://tomcat.apache.org/whichversion.html

¶ https://tomcat.apache.org/tomcat-60-eol.html

¶ https://tomcat.apache.org/tomcat-70-eol.html

¶ https://tomcat.apache.org/tomcat-80-eol.html

¶ https://nvd.nist.gov/vuln/detail/CVE-2020-1938

36

Finding: Critical ï NGINX 1-Byte Memory Overwrite RCE

WKL discovered a vulnerable version of Nginx running on the above hosts which is affected

by a remote code execution vulnerability. A security issue in nginx resolver was identified,

which could allow an unauthenticated remote attacker to cause 1-byte memory overwrite by

using a specially crafted DNS response, resulting in worker process crash or, potentially, in

arbitrary code execution.

Recommendations:

WKL recommends applying the security patches necessary to mitigate the risk of

exploitation. Due to the critical nature of this vulnerability, it is recommended to update the

Nginx web server immediately. For more information, please reference:

¶ https://nvd.nist.gov/vuln/detail/CVE-2021-23017

Finding: High ï ESXI 6.5 / 6.7 XSS

WKL discovered multiple instances of XSS vulnerabilities on ESXi servers. The remote

VMware ESXi hosts were discovered to be running version 6.5 or 6.7 and are affected by a

cross-site scripting (XSS) vulnerability in virtual machine attributes due to improper validation

of user-supplied input. An authenticated, remote attacker with access to modify the system

properties of a virtual machine from inside the guest OS can exploit this, by inserting script-

related HTML in the system properties and having a user view the system properties from

the ESXi Host Client, to execute arbitrary script code in a user's ESXi Host Client session.

Recommendations:

WKL recommends patching the ESXi servers to the newest supported ESXi version. For

more information, please reference the following:

¶ https://www.vmware.com/security/advisories/VMSA-2020-0008.html

Finding: High ï Overly Permissive Active Directory Rights

Active Directory permissions can be a challenging area to master as, attackers are coming

up with new ways to exploit common misconfigurations in an Active Directory network. The

challenge in managing Active Directory permissions is often determining the access of each

group/user. Often the full impact of what access a group/user actually has is not fully

understood by the organization. Attackers leverage access (though not always privileged

access) to compromise Active Directory.

https://nvd.nist.gov/vuln/detail/CVE-2021-23017
https://www.vmware.com/security/advisories/VMSA-2020-0008.html

37

The key point often missed is that rights to Active Directory and key resources is more than

just group membership; it is the combined rights the user has which is made up of:

¶ Active Directory group membership.

¶ AD groups with privileged rights on computers

¶ Delegated rights to AD objects by modifying the default permissions (for security

principals, both direct and indirect).

¶ Rights assigned to SIDs in SIDHistory to AD objects.

¶ Delegated rights to Group Policy Objects.

¶ User Rights Assignments configured on workstations, servers, and Domain

Controllers via Group Policy (or Local Policy) defines elevated rights and permissions

on these systems.

¶ Local group membership on a computer or computers (similar to GPO assigned

settings).

¶ Delegated rights to shared folders.

When performing Active Directory enumeration of a network, scans are completed of the

Active Directory for AD ACLs that can identify the accounts/groups with privileged rights

based on the delegation on AD objects such as the domain, OUs, security groups, etc. Every

object in Active Directory has default permissions applied to it as well as inherited and any

explicit permissions.

Some of the Active Directory object permissions and types that attackers are interested in:

¶ GenericAll - full rights to the object (add users to a group or reset user's password)

¶ GenericWrite - update object's attributes (i.e logon script)

¶ WriteOwner - change object owner to attacker controlled user take over the object

¶ WriteDACL - modify object's ACEs and give attacker full control right over the object

¶ AllExtendedRights - ability to add user to a group or reset password

¶ ForceChangePassword - ability to change user's password

¶ Self (Self -Membership) - ability to add yourself to a group

WKL discovered the ñService Accounts ò group had local admin permissions to over 2900+

hosts within the network. The following example shows the BloodHound data for the

ñService Accounts ò group:

38

Figure 42 - Example of Service Accounts group local admin access

Recommendations:

White Knight Labs recommends auditing Active Directory user rights and permissions. To

effectively identify all accounts with privileged access, it's important to ensure that all

avenues are explored to effectively identify the rights. This means that organizations need to

check the permission on AD objects, starting with Organizational Units (OUs) and then

branching out to security groups. Additionally, all Active Directory users and groups should

follow the least privilege model based on only providing the necessary permissions for the

desired business operation.

WKL recommends checking the following:

¶ Enumerate group membership of default groups (including sub-groups). Identify what

rights are required and remove the others.

¶ Scan Active Directory (specifically OUs & security groups) for custom delegation.

¶ Scan for accounts with SIDHistory (should only be required during an active

migration from one domain to another).

39

¶ Review User Rights Assignments in GPOs that apply to Domain Controllers, Servers,

and Workstations.

¶ Review GPOs that add AD groups to local groups and ensure these are still required

and the level of rights are appropriate.

For more information on Active Directory permissions please reference the following:

¶ https://ired.team/offensive-security-experiments/active-directory-kerberos-

abuse/abusing-active-directory-acls-aces#genericall-on-user

¶ https://adsecurity.org/?p=4119

¶ https://www.harmj0y.net/blog/activedirectory/the-most-dangerous-user-right-you-

probably-have-never-heard-of/

Finding: High ï Microsoft AppLocker Not Enabled

Microsoft AppLocker is an application whitelisting technology that advances the app control

features and functionality of Software Restriction Policies. AppLocker contains capabilities

and extensions that allow for the creation of rules to allow or deny apps from running based

on unique identities of files and to specify which users or groups can run those apps.

AppLocker currently allows control over the following types of apps: executable files (.exe

and .com), scripts (.js, .ps1, .vbs, .cmd, and .bat), Windows Installer files (.mst, .msi and

.msp), DLL files (.dll and .ocx), and packaged apps and packaged app installers (appx).

WKL discovered that [CLIENT] does not currently have an AppLocker policy enabled on the

[CLIENT] domain. This allows for the injection of malicious payloads that, when executed,

permit the use of Microsoft Powershell and CMD terminals. This can allow an attacker to

execute arbitrary code on systems within the domain and may lead to escalation of

privileges that can result in a full domain compromise.

Recommendations:

WKL recommends enabling Microsoft AppLocker within the domain to restrict the use of

potentially malicious file types, such as .exe and .ps1 files. While implementation of

AppLocker may vary based on the domain and business requirements, Microsoft has

provided extensive documentation for the deployment of AppLocker as well as guides for

creating custom rules within the domain. For more information, please reference:

¶ https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-

defender-application-control/applocker/applocker-policies-deployment-guide

¶ https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-

defender-application-control/applocker/create-your-applocker-policies

https://ired.team/offensive-security-experiments/active-directory-kerberos-abuse/abusing-active-directory-acls-aces#genericall-on-user
https://ired.team/offensive-security-experiments/active-directory-kerberos-abuse/abusing-active-directory-acls-aces#genericall-on-user
https://adsecurity.org/?p=4119
https://www.harmj0y.net/blog/activedirectory/the-most-dangerous-user-right-you-probably-have-never-heard-of/
https://www.harmj0y.net/blog/activedirectory/the-most-dangerous-user-right-you-probably-have-never-heard-of/
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/applocker-policies-deployment-guide
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/applocker-policies-deployment-guide
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/create-your-applocker-policies
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/create-your-applocker-policies

40

¶ https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-

defender-application-control/applocker/deploy-the-applocker-policy-into-production

Finding: High ï Lack of LDAP Signing and Channel Binding

LDAP Signing and Channel Binding provide ways to increase the security for

communications between LDAP clients and Active Directory domain controllers. LDAP

signing is a Simple Authentication and Security Layer (SASL) feature that is a part of the

LDAP protocol used to access Active Directory. Binding is the step where the LDAP server

authenticates the client and, if the client is successfully authenticated, allows the client

access to the LDAP server based on that client's privileges.

The default configuration for LDAP Channel Binding and LDAP Signing on Active Directory

domain controllers is to permit LDAP clients to establish connections without enforcing LDAP

Channel Binding and signing. This can potentially open Active Directory domain controllers

to an elevation of privilege vulnerability by relaying connections between services and could

raise the criticality of other attacks that rely on connection relaying to be effective, such as

the PetitPotam attack.

Recommendations:

Microsoft has stated that they will not be changing default LDAP signing and channel binding

requirements in future Windows updates, but they have released guidance for administrators

to mitigate these vulnerabilities via Group Policy in addition to adding event IDs 3039, 3040,

and 3041 to aid in detection.

WKL recommends enabling LDAP Signing and LDAP Channel Binding on the affected hosts

in order to mitigate the risk of exploitation. LDAP Signing and Channel Binding token

requirements can be enabled via Group Policy, Local Computer Policy, or Domain Group

Policy Objects. It is also recommended that LDAP events diagnostic logging be set to level 2

or higher. For more information, please reference:

¶ https://docs.microsoft.com/en-us/troubleshoot/windows-server/identity/enable-ldap-

signing-in-windows-server

¶ https://support.microsoft.com/en-us/topic/2020-ldap-channel-binding-and-ldap-

signing-requirements-for-windows-ef185fb8-00f7-167d-744c-f299a66fc00a

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/deploy-the-applocker-policy-into-production
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/deploy-the-applocker-policy-into-production
https://docs.microsoft.com/en-us/troubleshoot/windows-server/identity/enable-ldap-signing-in-windows-server
https://docs.microsoft.com/en-us/troubleshoot/windows-server/identity/enable-ldap-signing-in-windows-server
https://support.microsoft.com/en-us/topic/2020-ldap-channel-binding-and-ldap-signing-requirements-for-windows-ef185fb8-00f7-167d-744c-f299a66fc00a
https://support.microsoft.com/en-us/topic/2020-ldap-channel-binding-and-ldap-signing-requirements-for-windows-ef185fb8-00f7-167d-744c-f299a66fc00a

41

Finding: High ï Disable NTLM Authentication

Windows NT LAN Manager (NTLM) is a challenge-response authentication protocol used to

authenticate a client to a resource in an Active Directory environment. When the client

requests access to a service within the domain, the service sends a challenge to the client,

requiring that the client utilize its authentication token and respond with the result. The

service may validate the result or send it to the Domain Controller (DC) for validation. If the

service or DC confirms that the clientôs response is correct, the service allows access to the

client.

NTLM authentication is considered a legacy authentication protocol and presents

considerable vulnerabilities to the Active Directory environment. NTLMôs older cryptography

scheme makes it easy for attackers to obtain password hashes. These hashes are

encrypted using MD4 encryption, which can be cracked with little effort. NTLM authentication

is also vulnerable to NTLM Relay Attacks, in which an attacker positions themselves as a

man-in-the-middle on the network and spoofs challenge messages to receive the responses

from hosts on the network. These responses are then relayed by the attacker for

authentication. Additionally, since NTLM is based on passwords, this protocol is not

compatible with any form of Multifactor Authentication or smart card technology.

Recommendations:

WKL recommends that NTLM authentication be disabled within the Active Directory

environment and replaced with Kerberos authentication. NTLM authentication can be

disabled via Group Policy as well as through the Registry Editor. For more information on the

two methods of disabling NTLM authentication, please reference:

¶ https://www.thewindowsclub.com/disable-ntlm-authentication-in-windows-domain

Finding: High ï Windows Default IPv6 Configuration

On the public internet, the usage of Internet Protocol version 6 (IPv6) is increasing, but in

most internal organization networks it is not commonly used. By default, Windows operating

systems are configured with IPv6 enabled on network interfaces. IPv6 is not only enabled,

but when utilized it is preferred by Windows over IPv4. If an organization has Windows hosts

with IPv6 enabled and has not assigned a static IP address or a DHCPv6 service, an

attacker can deploy a DHCPv6 service that assigns victim hosts an IPv6 address. This will

then allow an attacker to obtain a man-in-the-middle position for protocols like DNS. This can

be used to abuse additional weaknesses to compromise hosts.

https://www.thewindowsclub.com/disable-ntlm-authentication-in-windows-domain

42

Recommendations:

WKL recommends setting network preference for IPv4 over IPv6 in order to mitigate the risk

of exploitation, without exposing the network to significant disruptions that may be caused by

disabling IPv6 completely. For more information please reference:

ǒ https://support.microsoft.com/en-us/help/929852/guidance-for-configuring-ipv6-in-

windows-for-advanced-users.

ǒ https://answers.uillinois.edu/uis/page.php?id=99981

ǒ https://blog.fox-it.com/2018/01/11/mitm6-compromising-ipv4-networks-via-ipv6/

Finding: High ï Windows Insecure Name Resolution

Link-Local Multicast Name Resolution (LLMNR) and NetBIOS Name Services (NBNS) are

two built-in components of Microsoft Windows that allow the system to identify other systems

when DNS lookups fail. This allows Windows to continue to function on a network despite

outdated or missing DNS records. It also allows attackers to spoof responses to these

systems, causing them to authenticate to the attackerôs system using NTLM over SMB.

WKL successfully captured the hashes of multiple users on the network using this attack, as

well as relayed those hashes to other systems, providing WKL with a foothold on the

network.

Figure 43 - Example of NetBIOS Poisoning

Recommendations:

WKL recommends disabling both LLMNR and NBNS on all Windows systems. This change

should be made after sufficient testing in a test domain that mimics the production domain in

terms of usage. To ensure that LLMNR is turned off, the setting needs to be modified in two

places ï the registry key and via a GPO pushed out. The verbose GPO instructions on

turning off LLMNR within Active Directory are:

https://support.microsoft.com/en-us/help/929852/guidance-for-configuring-ipv6-in-windows-for-advanced-users
https://support.microsoft.com/en-us/help/929852/guidance-for-configuring-ipv6-in-windows-for-advanced-users
https://answers.uillinois.edu/uis/page.php?id=99981
https://blog.fox-it.com/2018/01/11/mitm6-compromising-ipv4-networks-via-ipv6/

43

1. Use Local Group Policy editor by running gpedit.msc and modifying the policy.

2. Computer Configuration -> Administrative Templates -> Network -> DNS Client ->

Enable Turn Off Multicast Name Resolution policy by changing its value to Enabled

Figure 44 - Example of Multicast Name Resolution in Group Policy

If central GPO management is not available these settings can also be configured with the

following registry keys.

For turning off LLMNR usage via registry modification:

1. REG ADD ñHKLM\Software\policies\Microsoft\Windows NT\DNSClientò

2. REG ADD ñHKLM\Software\policies\Microsoft\Windows NT\DNSClientò /v ò

EnableMulticastò /t REG_DWORD /d ñ0ò /f

Finding: High ï Web Proxy Auto-Discovery Enabled

WKL encountered Windows hosts on the network that have the Web Proxy Auto-Discovery

setting enabled. Web Proxy Auto-Discovery (WPAD) is a method by which a client, such as

a workstation or a server, locates and installs a proxy configuration file over DHCP or DNS.

Once the proxy server is configured in this manner it is used to act as an intermediary

between the proxy client and the target resource. This configuration is enabled by default on

Windows and is implemented by any component that utilizes WinHTTP, such as Internet

Explorer or Google Chrome.

This method allows an attacker on the network to utilize DNS poisoning techniques to spoof

victim machines attempting to identify the WPAD server. Once the DNS lookup for WPAD

has been poisoned, the victim machine will retrieve the Proxy Auto-Configuration (PAC) file

from the attacker machine and install the attacker machine as the proxy for future requests.

By becoming the proxy, the attacker machine then can analyze the information being passed

between the victim machine and the target resource. This may reveal sensitive information,

44

such as usernames and password hashes, that the attacker may then use to further exploit

the network.

Recommendations:

There is a lot of documentation regarding fixes for the WPAD issue, and many are not

effective. WKL recommends disabling the WinHTTPAutoProxySvc service. This can be

done by modifying the registry ï simply change the value of the ñStartò REG_DWORD from

ñ3ò to ñ4ò under the key

ñHKLM\SYSTEM\CurrentControlSet \Services \WinHttpAutoProxySvc ò. There is a

substantial blog post by Google Project Zero that provides a large amount of information on

this attack vector, and the remediation listed above can be found in the Conclusion section.

Please see this document for more information:

¶ https://googleprojectzero.blogspot.com/2017/12/apacolypse-now-exploiting-windows-

10-in_18.html

Finding: Medium - SMB Signing Not Enabled

SMB signing is a security mechanism in the SMB protocol and is also known as security

signatures. SMB signing is designed to help improve the security of the SMB protocol. SMB

signing and security signatures can be configured for the Workstation service and for the

Server service. The Workstation service is used for outgoing connections while the Server

service is used for incoming connections.

SMB signing is needed to confirm the origin and authenticity of the incoming SMB packet. In

the process, it eliminates any kind of tampering and man-in-the-middle attacks. Overall, it

makes your packets more secure during transmission.

WKL discovered that SMB signing was not enabled on 200+ hosts on the network. An

unauthenticated, remote attacker could exploit this to conduct man-in-the-middle attacks

against the vulnerable SMB servers or workstations.

Recommendations:

WKL recommends enabling SMB signing for all hosts within the network. Group Policy is the

recommended solution to enable SMB signing for all hosts within the network. For more

information, please reference the following:

¶ https://docs.microsoft.com/en-us/previous-versions/orphan-

topics/ws.11/cc731957(v=ws.11)?redirectedfrom=MSDN

¶ https://www.samba.org/samba/docs/current/man-html/smb.conf.5.html

https://googleprojectzero.blogspot.com/2017/12/apacolypse-now-exploiting-windows-10-in_18.html#conclusion
https://googleprojectzero.blogspot.com/2017/12/apacolypse-now-exploiting-windows-10-in_18.html#conclusion
https://docs.microsoft.com/en-us/previous-versions/orphan-topics/ws.11/cc731957(v=ws.11)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/orphan-topics/ws.11/cc731957(v=ws.11)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/orphan-topics/ws.11/cc731957(v=ws.11)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/orphan-topics/ws.11/cc731957(v=ws.11)?redirectedfrom=MSDN
https://www.samba.org/samba/docs/current/man-html/smb.conf.5.html

45

Finding: Low ï Enable LSA Protection

The LSA, which includes the Local Security Authority Server Service (LSASS) process,

validates users for local and remote sign-ins and enforces local security policies. The

additional LSA protection provides protection to prevent code injection by non-protected

processes.

This provides added security for the credentials that the LSA stores and manages. This

protected process setting for LSA can be configured for Windows 8.1 and Server 2012 and

along with Windows 10 and Server 2016/2019.

By enabling additional LSA protection, attackers will no longer be able to conduct pass-the-

hash style attacks or use common tooling such as Mimikatz. Processes will no longer be

able to attach to the lsass.exe process unless they are signed by Microsoft.

Recommendations:

WKL recommends enabling additional LSA protection10 for Server 2012 and Windows 8.1 by

setting the Run LSA as a Protected Process registry key. This will allow lsass.exe to run as a

protected process. The following example shows the registry key that should be set on all

Server 2012 / Windows 8.1 hosts:

LSA Protection ensures that LSA plug-ins and drivers are only loaded if they are digitally

signed with a Microsoft signature and adhere to the Microsoft Security Development

Lifecycle (SDL) process guidance.

For Windows 10 and Server 2016/2019, enable Windows Defender Credential Guard11 to

run lsass.exe in an isolated virtualized environment without any device drivers. It is also

recommended to ensure safe DLL search mode is enabled by setting the following registry

key:

For more information please reference:

¶ https://docs.microsoft.com/en-us/windows-server/security/credentials-protection-and-

management/configuring-additional-lsa-protection

10 https://docs.microsoft.com/en-us/windows-server/security/credentials-protection-and-

management/configuring-additional-lsa-protection

11 https://docs.microsoft.com/en-us/windows/security/identity-protection/credential-guard/credential-guard-

manage

https://docs.microsoft.com/en-us/windows-server/security/credentials-protection-and-management/configuring-additional-lsa-protection
https://docs.microsoft.com/en-us/windows-server/security/credentials-protection-and-management/configuring-additional-lsa-protection

46

¶ https://docs.microsoft.com/en-us/windows/security/identity-protection/credential-

guard/credential-guard-manage

Finding: Low ï Idle RDP Sessions

WKL identified that RDP sessions that were disconnected, stayed active with processes

running under the current userôs session. This is normal behavior for Windows Servers and

Workstations. During enumeration of a network, attackers will check to see if any Domain

Admins or administrative accounts have left a session open over RDP to a set of hosts in the

network. This information can be pulled using a basic Domain User account from Active

Directory. If sessions are found on hosts with high value target accounts, this could be

considered as an attack path that could provide privilege escalation if access to the server is

gained.

Recommendations:

By default, Remote Desktop Services12 allows users to disconnect from a remote session

without logging off and ending the session. When a session is in a disconnected state,

running programs are kept active even though the user is no longer actively connected. WKL

recommends adding a timeout configuration policy that can be applied to all hosts within the

network.

Timeouts and reconnection settings can be configured by applying the following Group

Policy settings:

¶ Set time limit for disconnected sessions

¶ Set time limit for active but idle Remote Desktop Services sessions

¶ Set time limit for active Remote Desktop Services sessions

¶ Terminate session when time limits are reached

The above Group Policy settings can be found in the following areas:

¶ Computer Configuration \Policies \Administrative Templates \Windows

Components \Remote Desktop Services \Remote Desktop Session Host \Session

Time Limits

¶ User Configuration \Policies \Administrative Templates \Windows

Components \Remote Desktop Services \Remote Desktop Session Host \Session

Time Limits

12 https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-

2008/cc754272(v=ws.11)?redirectedfrom=MSDN

https://docs.microsoft.com/en-us/windows/security/identity-protection/credential-guard/credential-guard-manage
https://docs.microsoft.com/en-us/windows/security/identity-protection/credential-guard/credential-guard-manage

47

For more information, please reference the following:

¶ https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-

2008-R2-and-2008/cc754272(v=ws.11)?redirectedfrom=MSDN

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc754272(v=ws.11)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc754272(v=ws.11)?redirectedfrom=MSDN

