

[CLIENT]

Malicious Developer Assessment

[DATE]

 1

Confidentiality Statement
All information in this document is provided in confidence. It may not be modified by or
disclosed to a third party (either in whole or in part) without the prior written approval of
White Knight Labs (WKL). WKL will not disclose to any third-party information contained in
this document without the prior written approval of [CLIENT].

Document Control
Date Change Change by Issue

[DATE] Document Created [ENGINEER] V0.1

[DATE] Document Published [ENGINEER] V1.0

Document Distribution
Name Company Format Date

[CLIENT CONTACT] [CLIENT] PDF [DATE]

White Knight Labs Contact Details
Address White Knight Labs

10703 State Highway 198 Guys Mills PA 16327

Contact Tel: +1 (877) 864-4204
Mob: +1 (814) 795-3110
Email: info@whiteknightlabs.com

mailto:info@whiteknightlabs.com

 2

Table of Contents
Executive Summary ... 3

Scoping and Rules of Engagement .. 4

Summary of Findings ... 7

Malicious Developer Assessment Methodology ... 10

Attack Narrative ... 13

Objective #1: Source Code Review .. 14

Objective #2: Decrypt Jenkins Environment Variables ... 15

Objective #3: Code Execution via Jenkins ... 17

Objective #4: Install C2 on Build Server ... 25

Objective #5: Lateral Movement ... 27

Additional Attack Avenues and Impact ... 30

Malicious Developer Assessment Findings ... 33

Finding: Critical – Critical Information Stored in Cleartext .. 33

Finding: Critical – Root Private Key Reuse .. 35

Finding: Critical – Shared User Accounts ... 37

Finding: High – Docker Privilege Escalation .. 38

Finding: High – Weak Administrative Password Hash ... 39

Finding: High – Lack of Endpoint Protection .. 41

Finding: Medium – Insufficient Network Monitoring and Intrusion Detection Systems 42

Finding: Medium – Insufficient Audit Logging ... 43

Finding: Medium – Unpatched Jenkins Service and Outdated Plugins 44

Finding: Medium – Inadequate Anomaly Detection .. 45

Finding: Medium – Ineffective Firewall Configuration ... 46

Finding: Medium – Improper HTTPS Inspection .. 47

Finding: Low – SSH Root Login ... 48

Conclusion ... 50

Appendix A: Artifacts .. 51

Appendix B: Risk Profile .. 52

 3

Executive Summary
From [DATE] to [DATE], White Knight Labs (WKL) conducted a Malicious Developer
Assessment for [CLIENT]. The primary objective was to mimic the access of a compromised
developer and evaluate the potential damage that could be inflicted by an insider threat with
those privileges. Additionally, [CLIENT] hosts were investigated for any potential indicators
of compromise (IOCs) that a malicious insider could have left behind.

Throughout the assessment, WKL successfully achieved all assigned objectives, illuminating
potential vulnerabilities within the network infrastructure. Of particular concern was the
unauthorized access WKL gained to the root user account on the server, which poses a
significant security risk. This breach allowed WKL to access sensitive information, raising
concerns about data protection and access controls within the organization. Most
significantly, the existence of cleartext credentials puts sensitive customer data and
proprietary information at risk of being compromised.

WKL's success extended to compromising [CLIENT]’s backup server. This highlights both
the organization's vulnerability to unauthorized access and the risks it presents to backup
systems that provide critical data protection.

Perhaps most concerning was WKL's ability to obtain administrative access to cloud and
database resources based on the discovery of cleartext credentials. This poses a severe
security risk that could lead to a full network takeover and unauthorized access to critical
systems.

In addition to these findings, it was evident that [CLIENT]’s network segmentation could
benefit from enhancement. Implementing network segmentation strategies, including micro-
segmentation, would create isolated zones within the network, restricting lateral movement
and communication in case of a breach.

One prominent finding was the need for improvement in logging capabilities. This report
recommends [CLIENT] refine its logging practices, as well as conduct regular training and
awareness programs for employees and users. Additionally, strengthening access controls
and privilege management, following the principle of least privilege (POLP), is essential to
mitigate the risk of unauthorized access to sensitive information.

Commissioning this Malicious Developer Assessment reflects [CLIENT]’s commitment to the
security of its business and its clients. By implementing the recommendations presented in
this report, [CLIENT] will make significant strides towards enhancing its security posture,
protecting sensitive data, and strengthening its resilience against evolving insider threats.

 4

Scoping and Rules of Engagement
While malicious actors are unrestricted in their actions, White Knight Labs (WKL) recognizes
the importance of scoping assessments to ensure timely completion and protect third parties
not involved in the engagement. The following limitations were applied to this engagement:

• Malicious Developer Assessment: The Malicious Developer Assessment involved
simulating the actions of a potential malicious developer within the network. This
simulated attacker, conducted by WKL, mimicked the access of a compromised
developer. WKL aimed to evaluate the effectiveness of security measures against a
threat that has gained unauthorized access to the internal network. The assessment
focused on examining code execution via Jenkins access and identifying
vulnerabilities that could lead to further compromise. This encompassed escalating
privileges and identifying critical data assets within the designated network, often
referred to as the "crown jewels." To conduct this assessment, [CLIENT] provided
WKL with a VPN config, credentials for the internal network, and access to source
code. This permitted WKL to mimic the actions an insider threat would perform on the
network, and in turn, allowed for a comprehensive exploration of internal network
dynamics and security protocols.

WKL conducted the engagement test in two parts:

• Black-Box Testing: In a black-box engagement, the consultant does not have
access to internal information, nor is the consultant granted internal access to the
client's applications or network. The consultant's role is to perform reconnaissance to
gather the necessary sensitive knowledge, placing them in a position similar to that of
a typical attacker.

• White-Box Testing: In a white-box engagement, the security consultant is granted
complete access to applications and systems. This allows the consultant to view
source code and be provided with high-level privilege accounts to the network. The
purpose of white-box testing is to identify potential weaknesses in areas such as
logical vulnerabilities, security exposures, misconfigurations, code quality, and
defensive measures.

The assessment was conducted in adherence to a well-defined set of rules and scope. The
objectives for this Malicious Developer Assessment were clearly defined:

• Jenkins Code Execution: Execute code via Jenkins access to escalate privileges
and establish persistence on the server.

• Establish Command and Control (C2): Install a C2 implant on the Build server for
long term persistence and access.

 5

• Inspect Source Code: Examine [CLIENT] source code for the presence of cleartext
credentials that could allow an attacker to further their access in the environment.

• Conduct Lateral Movement: Move laterally to the database servers and/or backup
servers to show impact.

• Hunt for Sensitive Information: Decrypt and inspect Jenkins environment variables
for any sensitive information and/or credentials.

• Modify Jenkins Pipeline: Attempt to modify the integrity of the Jenkins build pipeline
in any way.

The following timeline details the engagement from start to finish of the [CLIENT] network:

• Kickoff Call – [DATE]
• Engagement Testing – [DATE] – [DATE]
• Debrief Call – TBD

 6

[CLIENT] Risk Rating

WKL calculated the risk to [CLIENT] based on exploitation likelihood (ease of exploitation)
and potential impact (potential business impact to the environment).

Overall Risk Rating: High

KEY
__ Informational
__ Low
__ Moderate
__ High
__ Critical

Exploitation
Likelihood

Potential Impact

 7

Summary of Findings
During the testing phase of the Malicious Developer Assessment, a comprehensive
evaluation of [CLIENT]’s network security was conducted. This included a specific focus on
assessing the network's ability to detect and respond effectively to various attack
techniques. The Malicious Developer Assessment involved simulating potential malicious
insider actions within the network environment. Led by White Knight Labs (WKL), this
simulated adversary aimed to gauge the effectiveness of the network's security measures
against an unauthorized intruder with internal access.

The assessment concentrated on analysing lateral movement capabilities and identifying
vulnerabilities that could lead to further compromise, including privilege escalation and
identification of critical data assets referred to as the "crown jewels." The subsequent
findings and recommendations are summarized below, organized into two main categories:
"Areas Needing Improvement and Ongoing Investment" and "Strategic Initiatives to
Strengthen Overall Security Posture."

Areas Needing Improvement and Ongoing Investment:
Implement and enforce a least privilege access model:

Adopt and rigorously enforce the principle of least privilege (POLP) across the network. This
involves assigning users only the minimum permissions necessary to perform their tasks.
Regularly review and adjust permissions to ensure that users have access only to the
resources and systems they require for their roles, minimizing the potential impact of any
compromised accounts.

Enhance network configurations to impede lateral movement:

Implement network segmentation and micro-segmentation strategies to create isolated
zones within the network. By partitioning the network into smaller segments, [CLIENT] can
limit the lateral movement of attackers in case of a breach. Ensure that firewall rules are
well-defined, only allowing necessary communication between segments.

Improve detection mechanisms for credential enumeration:

Invest in advanced detection mechanisms that can identify abnormal behavior associated
with credential enumeration attempts. Similarly, utilize behavior-based anomaly detection to
identify unusual access patterns, such as multiple failed login attempts or rapid
authentication requests, and trigger alerts for potential threats.

Inventory and Baseline Applications: Create an inventory of all applications and
executables currently in use across the network. This baseline will serve as the foundation
for implementing allowlisting rules.

 8

Strategic Initiatives to Strengthen Overall Security Posture:
• Application Control: Implement application control policies to restrict the installation

and execution of unapproved or potentially harmful software. This includes
preventing the use of unsigned or unauthorized applications.

• Prioritize Attack Surface Reduction Measures: Based on the identified attack
vectors, prioritize the implementation of measures to reduce the attack surface.
Focus on high-risk areas that could be exploited by attackers.

• Implement Network Segmentation: Further enhance network segmentation as a
means of reducing the attack surface. Create isolated zones within the network and
implement strict firewall rules to limit lateral movement and communication.

In conclusion, the testing conducted during the Malicious Developer Assessment provided
actionable insights into [CLIENT]’s network security landscape. By addressing the identified
areas needing improvement and investing in initiatives to strengthen the overall security
posture, [CLIENT] can significantly increase its resilience against evolving cyber threats.

The summary of findings highlights both the areas requiring immediate improvement and the
strategic initiatives necessary to fortify [CLIENT]’s security posture. By addressing these
recommendations, [CLIENT] can continue to strengthen its defence against evolving cyber
threats.

Overview Of Malicious Developer Findings:

Assessment Type Critical High Medium Low Info

Malicious Developer Assessment 3 3 6 1 0

 9

Malicious Developer Findings Identified
Listed below are specific findings that WKL identified during the testing of the Malicious
Developer Assessment.

Risk Vulnerability Type

Critical Critical Information Stored in Cleartext Internal

Critical Root Private Key Reuse Internal

Critical Shared User Accounts Internal

High Docker Privilege Escalation Internal

High Weak Administrative Password Hash Internal

High Lack of Endpoint Protection Internal

Medium Insufficient Network Monitoring and Intrusion Detection
Systems

Internal

Medium Insufficient Audit Logging Internal

Medium Unpatched Jenkins Service and Outdated Plugins Internal

Medium Inadequate Abnormal Detection Internal

Medium Ineffective Firewall Configuration Internal

Medium Improper HTTPS Inspection Internal

Low SSH Root Login Internal

 10

Malicious Developer Assessment Methodology
The Malicious Developer Assessment, conducted by White Knight Labs, is a comprehensive
evaluation designed to assess and enhance your organization's defensive capabilities
against modern cyber threats. By simulating real-world attack scenarios, this assessment
validates the effectiveness of your detection, response, and mitigation strategies, ultimately
bolstering your overall security posture.

1. Introduction:

• The Malicious Developer Assessment involves a tactical approach focused on
achieving specific objectives that simulate potential actions of malicious insiders. Our
methodology focuses on adopting the perspective of a disgruntled employee seeking
to compromise sensitive assets, allowing us to uncover vulnerabilities and provide
actionable recommendations to enhance your overall security posture.

2. Pre-Assessment Preparation:

• Engagement Kick-off: Initiate the assessment by conducting a collaborative kick-off
meeting with key stakeholders. Clarify assessment goals, objectives, scope, and
expected outcomes.

• Information Collection: Gather essential information, including network architecture
diagrams, access credentials, security policies, and any relevant historical security
assessments.

 11

3. Threat Scenario Development:

• Objective Setting: Collaborate with your team to define specific objectives for the
assessment, replicating scenarios where malicious insiders might exploit
vulnerabilities.

• Objective Scoping: Scope each objective to ensure they align with the goals of the
assessment and encompass potential insider threat scenarios.

4. Objective Execution:

• Objective Simulations: Execute simulations designed to achieve the predefined
objectives, replicating actions that a malicious insider might take to compromise
sensitive information.

• Realistic Scenario Emulation: Employ a variety of techniques and tools to replicate
realistic attack scenarios, without engaging in vulnerability scanning or penetration
testing.

5. Malicious Developer Objectives:

• Gaining Administrative Access to Critical Systems: Simulate attempts to gain
administrative access to critical systems, mimicking the actions of an insider seeking
to access sensitive data or cause network damage.

• Accessing Sensitive File Share Information: Replicate efforts to access sensitive
file share information, such as proprietary software, customer data, or trade secrets,
to identify potential data leakage risks.

• Stealing Valuable Intellectual Property: Emulate scenarios where insiders attempt
to steal valuable intellectual property, such as proprietary software or confidential
business plans, for personal gain or to harm the organization.

6. Reporting and Recommendations:

• Objective-Based Findings: Summarize findings based on the executed objectives,
outlining observed behaviors, potential vulnerabilities, and areas for improvement.

• Actionable Recommendations: Provide practical recommendations tailored to
address identified risks, fortifying your organization against potential insider threats.

• Objective-Based Insights: Offer insights into how attackers might exploit
vulnerabilities related to the executed objectives, empowering you to proactively
mitigate risks.

 12

7. Debrief and Strategic Planning:

• Client Debriefing: Conduct a debriefing session with stakeholders to present
findings, discuss potential implications, and explain recommended strategies for
improvement.

• Strategic Planning: Collaborate with your security team to plan and prioritize the
implementation of recommended security enhancements, focusing on minimizing
insider threat risks.

The Malicious Developer Assessment methodology aligns with your organization's needs to
effectively simulate potential insider threats. By achieving specific objectives that replicate
real-world scenarios, we identify vulnerabilities and guide you toward strengthening your
security posture against potential internal risks.

 13

Attack Narrative
The following sections outline the methods employed to accomplish each of the stated
objectives. The process commenced with the acquisition of unsecured credentials, followed
by the escalation of privileges, and culminated in the lateral movement towards the critical
servers within [CLIENT]’s infrastructure—all aimed at attaining the pre-defined goals.

For record-keeping purposes, the following IP addresses were utilized by the WKL engineers
to connect to the VPN:

• [IP ADDRESS]
The attack narrative is presented in approximately chronological order to provide the
sequence of events that led to the completion of objectives. Detailing this step-by-step
process will allow [CLIENT] to replicate the attack paths and understand the vulnerabilities
on a more granular level.

The upcoming attack narrative sections can be “logically” broken down in approximately
three phases:

1. Source Code Review:

• Objective #1: Hunt for Cleartext Credentials
2. Complete the Main Objectives:

• Objective #2: Decrypt Jenkins Environment Variables

• Objective #3: Code Execution via Jenkins
i. Enumeration

ii. Privilege Escalation

• Objective #4: Install C2 on Build Server

• Objective #5: Lateral Movement
i. Install C2 on Backup Server

3. Exhibit Additional Impact:

• Access to Backups, Snapshots, and Proprietary Data

• [DATABASE] Credentials in Cleartext

• Cleartext Credentials in Backup Scripts

 14

Objective #1: Source Code Review
The engagement commenced when [CLIENT] provided WKL with access to their private
GitHub to simulate the access of the compromised developer. WKL initiated a manual review
first and then implemented the tool trufflehog to go through the code repositories (repos). A
potential private key was uncovered from the ‘[FILE NAME] file in the [REPO NAME] repo.

Figure 1 – jenkins.[NAME].xml Private Key

 15

Objective #2: Decrypt Jenkins Environment
Variables
The WKL engineers then moved to the Jenkins server, to which they were provided an
administrative account. This replicates the access a malicious developer would have. Please
note that as of this writing, it is no longer common practice to provide all developers with
administrative access.

The first goal was to decrypt Jenkins environment variables. Afterwards, the data was
reviewed to determine whether sensitive information had been inadvertently stored. Items
such as passwords and private keys could be utilized to escalate privileges in the
environment and move laterally towards critical servers.

Due to the administrative permissions, WKL could access the Groovy Script Console in
Jenkins. From there, code was executed via the Script Console to decrypt the Jenkins
Environment variables.

Figure 2 - Dumping Jenkins Secrets 1

 16

Figure 3 - Dumping Jenkins Secrets 2

Review of the dumped Jenkins secrets revealed private keys, tokens, and cleartext
passwords. This sensitive data was used to further the overall objectives of the engagement.
Of note are the ‘[NAME]’ credentials, which were retrieved in cleartext. These credentials
were later used to access company backups and [CLIENT DATA].

 17

Objective #3: Code Execution via Jenkins

The Groovy Script Console was then used to execute commands on the build server
(build.[NAME].net). The console was used to execute commands to perform host
enumeration in the context of the jenkins user. The image below highlights the ‘id’ command
execution and output.

Figure 4 - Command Execution

After initial enumeration was conducted, WKL engineers executed a base64 encoded
command to add their SSH public key to the [NAME] file.

Figure 5 - Adding SSH Pub Key

 18

Figure 6 – [NAME] file

 19

Subsequently, WKL was able to SSH to build.[NAME].net ([IP ADDRESS]) as the [NAME]
user.

Figure 7 - Access to build.[NAME].net as [NAME] user

 20

Host Enumeration
Extensive enumeration on the build server uncovered multiple files inside the [FILE PATH]
directory that contained cleartext credentials.

Figure 8 - Credential Files

 21

The [FILE NAME] file contained multiple passwords and secrets for various services,
including the secretAccessKey to an s3 bucket.

Figure 9 - Credentials in [FILE]

 22

Another file that contained cleartext credentials in the [FILE PATH] directory was the [FILE
NAME] file. Although, these credentials appear to be for testing purposes.

Figure 9 – [FILE NAME] credentials

Additionally, cleartext credentials were found inside of the [FILE PATH] file. These
credentials were later used to access the [URL] site, which contained backups, snapshots,
and proprietary company data.

Figure 10 - Creds in [FILE NAME]

 23

Privilege Escalation
User enumeration revealed that the [NAME] user is a member of the [NAME] group. Based
on the way the docker daemon runs, being a member of the [NAME] group essentially
grants root access to the system. WKL used this group access to escalate privileges on the
build server and gain root access.

Figure 11 - Group Membership

WKL issued the command shown below, which obtained the alpine image from the Docker
Hub Registry and started it. The instance was set up to mount the root of the build server to
the instance volume. Therefore, when the docker instance started, it loaded a chroot into
that volume.

Figure 12 - Creating Alpine Docker Image

After verifying that the container was running, WKL executed the command below to enter
the container and obtain a shell.

Figure 13 - Enter Docker Instance

Once inside the container, WKL was able to enumerate the filesystem root of the build
server as the root user. The image below shows access to the [FILE NAME] directory and
then gaining access to the [FILE NAME] private SSH key.

 24

Figure 14 – Access root Private Key

WKL validated the SSH private key and regained access to the build server as the [NAME]
user.

Figure 15 - SSH Access to build Server

 25

Objective #4: Install C2 on Build Server

WKL then installed a C2 implant on the build server for long term persistence. WKL used the
open-source C2 framework Sliver to achieve this objective. WKL built a Linux beacon via the
command shown below.

Figure 16 - Sliver Beacon Generation

To ensure the Sliver beacon ran persistently, WKL created a systemd service named
[NAME], which ran the beacon located at [FILE PATH]. The service was enabled to start
each time the system rebooted. Please note that the beacon was placed in the /tmp
directory as a precaution to ensure artifcats did not persist past testing.

Figure 17 - Systemd Sliver Persistence

 26

Once the service was started, the beacon called back to the cloud C2 server. Details about
the callback are shown in the image below.

Figure 18 - Build Server C2 Persistence

 27

Objective #5: Lateral Movement

WKL performed enumeration on the build server as the root user and discovered another
host in [CLIENT]’s network. The host [NAME] ([IP ADDRESS]) was uncovered in the [FILE
PATH] file. The [NAME] server appears to be used for [DATABASE] backups.

Figure 19 – [NAME] Host Discovery

 28

WKL used the SSH private key from the build server to authenticate to the [NAME] host.
The authentication was successful and verified that the same private key was used for root
access to both servers.

Figure 20 - Root Access to [NAME]

 29

Establish Persistence on [SERVER]

To demonstrate additional impact, C2 persistence was also installed on the [NAME] backup
server. WKL created a systemd service named [NAME], which ran the beacon located at
/tmp/[FILE PATH]. The service was enabled to start each time the system rebooted. Please
note that the beacon was placed in the /tmp directory as a precaution to ensure artifcats did
not persist past testing.

Figure 21 – [SERVER] C2 Persistence

Once the service was started, the beacon called back to the cloud C2 server. Details about
the callback are shown in the image below.

Figure 22 – [SERVER] Sliver Callback

 30

Additional Attack Avenues and Impact
WKL gained access to additional critical information that is exhibited in this section.

Access to Backups, Snapshots, and Proprietary Data
Enumeration revealed the [FILE PATH] contained a password hash for the [NAME] user.
The password cracking tool hashcat was used and cracked the password almost instantly.

Figure 23 - [NAME] Hash

Afterwards, the credentials were used to access [HOST], which provided access to backups,
snapshots, and recordings of [CLIENT] information.

Figure 24 - Access to [HOST]

It appears that potentially sensitive or proprietary company/customer data is contained within
this site. Specifically, files located in the [PATH] directory contained information on customer
proposals and campaigns. This type of information can be of significant interest to
commercial competitors.

 31

[DATABASE] Credentials in Cleartext

Credentials for the [NAME] databases were found in cleartext in the [FILE PATH] file. This
could allow for the access and exfiltration of sensitive company info.

Figure 25 - DB Credentials [FILE PATH]

Cleartext [DATABASE] credentials were also found in the [FILE PATH] file on the [NAME]
server.

Figure 26 - DB Credentials in [FILE PATH]

Similarly, cleartext [DATABASE] credentials were found in the [FILE PATH] file on the
[NAME] server.

Figure 27 - DB Credentials in [FILE PATH]

 32

Cleartext Credentials in Backup Scripts

Cleartext credentials were also found inside of several bash scripts within the [FILE PATH]
directory on the [NAME] server.

Figure 28 – [SERVER] Backup Scripts

Credentials for the [NAME] database were found inside the [FILE PATH] script.

Figure 29 - Credentials in [FILENAME]

 33

Malicious Developer Assessment Findings

Finding: Critical – Critical Information Stored in Cleartext
During the assessment, a significant security concern was identified relating to the ‘[FILE
PATH]’ directory. This directory was found to contain an alarming amount of critical
information, including cleartext passwords, password hashes susceptible to cracking,
numerous database backups holding sensitive data, database configurations, and other
confidential data.

Risk:
The presence of these unsecured public file shares poses substantial risks to the
organization's security and confidentiality:

• Data Exposure: The inclusion of cleartext passwords, password hashes, and
sensitive database backups in a user directory greatly increases the risk of
unauthorized access to critical information, potentially leading to unauthorized
system access, and identity theft.

• Data Exfiltration: The stored database backups can be transferred outside the
organization, potentially leading to data breaches and regulatory non-compliance.

• Regulatory Non-Compliance: The exposure of sensitive data and cleartext
passwords may result in regulatory violations, leading to legal consequences and
financial penalties.

Affected Directory:
Critical information was found in all folders currently shared in ‘[FILE PATH].

Recommendations:
To mitigate the risks associated with network share permission misconfigurations, consider
implementing the following recommendations:

• Data Cleanup: Perform a thorough review and cleanup of the contents within the
home directory. Remove any sensitive or unnecessary data to minimize the attack
surface.

• Data Encryption: Encrypt sensitive data to ensure its confidentiality, even if
unauthorized access occurs.

 34

• User Training: Educate employees on the importance of data security, proper data
handling, and the risks associated with exposing sensitive information in accessible
locations.

 35

Finding: Critical – Root Private Key Reuse
White Knight Labs (WKL) identified a high vulnerability related to SSH private key reuse
across different servers within the client's environment. This issue emerged from a
successful compromise of root private key on [HOST]. The consultants reused the same
private key to access [HOST] as the root user.

Risk:
Password and/or key reuse across domains exposes the organization to substantial security
risks:

• Cross-System Compromise: Successful password reuse grants attackers access to
multiple systems, potentially compromising data, resources, and control over domain
functions.

• Privilege Escalation: Reusing passwords for high-privileged accounts can lead to
unauthorized access to critical systems, sensitive data, and administrative controls.

• Lateral Movement: Attackers can pivot across systems, escalating attacks and
potentially compromising the entire network.

• Account Takeover: Password reuse allows attackers to masquerade as legitimate
users, leading to unauthorized actions and data theft.

Affected Systems:
• [HOST] ([IP ADDRESS])

• [HOST] ([IP ADDRESS])

Recommendations:
To mitigate the risks associated with password reuse, the following measures are
recommended:

• Unique Passwords: High-privileged accounts should have complex and unique
passwords/keys, ensuring that the same password/key is not used across different
systems and domains.

• Regular Password Audits: Implement routine audits of passwords for high-
privileged accounts in all domains, identifying instances of password reuse.

• Password Policies: Enforce strong password policies that prevent password reuse
and promote the use of complex, unique passwords.

 36

• Multi-Factor Authentication (MFA): Implement MFA for high-privileged accounts to
add an additional layer of security, reducing the impact of compromised passwords.

References:
• National Institute of Standards and Technology (NIST). (URL: https://www.nist.gov/)

• SANS Institute - Password Policy Recommendations. (URL:
https://www.sans.org/security-awareness-training/blog/password-policy-
recommendations)

• NIST Special Publication 800-63B: Digital Identity Guidelines. (URL:
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63b.pdf)

https://www.nist.gov/
https://www.sans.org/security-awareness-training/blog/password-policy-recommendations
https://www.sans.org/security-awareness-training/blog/password-policy-recommendations
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63b.pdf

 37

Finding: Critical – Shared User Accounts
The assessment identified that multiple individuals were using the shared ‘[NAME]’ account.
While this may be simpler for authentication and access, it poses a security risk. Separate
accounts are needed for traceability and accountability for actions performed, not just for
administrators but regular users as well.

Risk:
Shared accounts present substantial security risks:

• Nonrepudiation: When users share an account, employers cannot prove which user
took a particular action. Thus, if a user performs a malicious action via a shared
account, it is difficult to know which user is responsible. This can prolong
compromises and prevent a culpable insider threat from being prosecuted.
Furthermore, nonrepudiation can have a deterrent effect. When users know their
actions can be traced back to them, they are more likely to comply with internal
company guidelines and security best practices than if their actions are anonymous.

Affected Systems:
WKL observed shared user accounts on the following systems:

• [HOST] ([IP ADDRESS])

• [HOST] ([IP ADDRESS])

Recommendations:
To mitigate the risks associated with shared user accounts, consider implementing the
following recommendations:

• Access Controls:

• Implement the principle of least privilege for user folders and files by
restricting access only to necessary users.

• Apply proper permissions based on user roles and responsibilities to ensure
authorized access.

• Regular Auditing: Conduct regular audits of network shares to identify and rectify
any misconfigurations or unauthorized access.

• Monitoring and Alerting: Monitor system folders for any suspicious activities or
unauthorized access attempts.

 38

Finding: High – Docker Privilege Escalation
WKL used docker group membership permissions to escalate from the ‘[NAME]’ user to the
root user on [HOST]. This led to complete access on the system and eventually lateral
movement to [HOST] system.

Risk:
This misconfiguration poses a severe risk as it can allow a compromised container to
perform unauthorized actions on the Docker host, effectively leading to a full system
compromise. Attackers could leverage this to escalate their privileges from within a container
to gain root access to the host, bypassing the isolation that Docker is supposed to enforce.
This in turn leads to a wide range of malicious activities including data theft, destruction, or
laying the groundwork for further lateral movement within the network.

Affected Users:
• [USERNAME]

Recommendations:
To mitigate the Docker privilege escalation risk, the following measures are recommended:

• Review and Restrict Container Capabilities: Modify the Docker configurations to
remove the --privileged flag from containers that do not explicitly require it. Always
adhere to the principle of least privilege to minimize the attack surface.

• Implement User Namespaces: Enable user namespaces in Docker so that root
inside a container is mapped to a non-root user on the Docker host. This adds an
additional layer of security by limiting the impact of a container compromise.
Configure and use user namespaces to segregate container users from host users,
reducing the risks associated with privilege escalation.

 39

Finding: High – Weak Administrative Password Hash
During engagement, it was discovered that the Nginx server's [FILE PATH] file contained a
weakly hashed password for the ‘[NAME]’ user. The hash found in the file was susceptible
to a standard password cracking tool. The password was cracked in a matter of seconds,
providing direct access to areas of the server hosting sensitive company data and backups.
This vulnerability presents a severe risk as the [FILE PATH] file is commonly known to
contain potential passwords. The weak hashing algorithm used does not provide sufficient
resistance against modern cracking techniques, potentially allowing an attacker to gain
unauthorized access to protected resources.

Risk:
The weak password uncovered from [FILE PATH], poses substantial risks to the
organization's security:

• Lateral Movement: It provides malicious actors with opportunities to traverse the
network, potentially compromising multiple systems.

• Privilege Escalation: Unauthorized users may attempt privilege escalation,
exploiting vulnerabilities to gain elevated privileges and control over critical systems.

• Data Exposure: Unauthorized access increases the risk of data exposure,
manipulation, and loss.

Affected Systems:
• [HOST] ([IP ADDRESS])

Recommendations:
To mitigate the associated risks, the following measures are recommended:

• Role-Based Access Control: Implement a role-based access control (RBAC)
system that restricts SSH access to only those individuals with a legitimate business
justification to specific servers only.

• Employ Stronger Hashing Algorithms: Update the hashing algorithm used in the
[NAME] file to a more secure one, such as bcrypt, which is designed to be slow and
computationally intensive to thwart cracking attempts. This can be done by changing
the password hashing settings in the Nginx configuration or by using tools that
support bcrypt when generating new password hashes.

• Regularly Update and Rotate Credentials: Establish a process for the regular
update and rotation of credentials contained within the [NAME] file. Ensure that all
passwords are complex, unique, and changed periodically to minimize the window of
opportunity for any cracked passwords to be exploited. Additionally, implement

 40

regular audits of password files to ensure compliance with the updated security
policies.

 41

Finding: High – Lack of Endpoint Protection
During the assessment, WKL identified that the Linux servers in the organization's network
lacked sufficient endpoint protection. This security gap was highlighted by the successfully
established C2 beacons on these servers. The C2 beacon, simulating an attacker's control
mechanism, was able to operate undetected, indicating a significant weakness. This lack of
endpoint protection not only allows such breaches to occur but also makes it difficult to
detect and respond to them in a timely manner, increasing the risk of sustained malicious
activity and data compromise.

Risk:
Endpoint protection is crucial for identifying and mitigating threats on individual devices
within an organization's network. A lack of adequate endpoint security measures exposes
systems to various cyber threats, including malware, unauthorized access, and data
exfiltration.

Affected Systems:
WKL observed lack of endpoint protection on the following systems:

• [HOST] ([IP ADDRESS])

• [HOST] ([IP ADDRESS])

Recommendations:
To address lack of endpoint protection, the following measures are recommended:

• Implement Comprehensive Endpoint Protection: Deploy advanced endpoint
protection solutions on all Linux servers. These solutions should include antivirus,
anti-malware, and host-based intrusion detection systems (HIDS) that can detect and
mitigate sophisticated threats.

• Regular Scanning for Threats: Regular scans help the early detection of malware,
potentially before it has had a chance to cause significant damage. Detection is
crucial for limiting the impact of a malware infection, such as data loss, data breach,
or system compromise.

 42

Finding: Medium – Insufficient Network Monitoring and
Intrusion Detection Systems
During the assessment, WKL observed that the network lacks sufficient monitoring and
intrusion detection systems (IDS). This was evidenced by the successful operation of a C2
beacon for an extended period without detection. The C2 beacon, simulating an attacker's
foothold, communicated back to the external command center, indicating that such activities
could go unnoticed in the current environment. This lack of detection increases the risk of
undetected data breaches or other malicious activities.

Risk:
Inadequate network monitoring and lack of IDS can lead to undetected malicious activities
within the network. This vulnerability can allow attackers to do the following:

• Establish a Foothold: Once an attacker gains a foothold, they can access, exfiltrate,
or manipulate sensitive data, leading to data breaches.

• Maintain Persistence: Persistent access allows attackers to remain undetected for
extended periods, during which they can continuously monitor, gather intelligence,
and exploit resources.

• Conduct Malicious Activities: Without being noticed, unauthorized users could
exfiltrate sensitive data from the network.

Recommendations:
To address insufficient network monitoring, the following measures are recommended:

• Implement Comprehensive Network Monitoring: Deploy a robust network
monitoring solution that continuously monitors all network traffic. Tools like SIEM
(Security Information and Event Management) should be used to aggregate and
analyze logs from various network devices.

• Deploy IDS: Install and properly configure IDS/IPS solutions to detect and potentially
block malicious activities. Consider both signature-based and anomaly-based IDS for
a comprehensive approach.

• Regular Audits and Updates: Regularly update IDS/IPS with the latest signatures
and anomalies patterns. Conduct periodic audits to ensure the systems are
functioning as expected.

• Network Segmentation and Access Control: Implement network segmentation to
limit the spread of malicious activities. Use Access Control Lists (ACLs) and firewall
rules to control traffic flow between network segments.

 43

Finding: Medium – Insufficient Audit Logging
During the assessment, WKL identified insufficient audit logging as a significant vulnerability
on the [HOST] ([IP ADDRESS]) host. Effective logging is a critical component of a robust
security posture, as it provides visibility into the activities occurring within the system and
applications. Essential logging includes monitoring of user activities, authentication attempts,
system changes, and Jenkins operational logs.

Furthermore, it is critical to offload logs to a centralized server or Security Information and
Event Management (SIEM) system. This practice not only mitigates the risk of log tampering
or loss during a system compromise but also allows for correlation of logs across different
systems. This provided a holistic view of the security landscape and enables advanced
analysis and detection.

Risk:
Lack of/improper audit logging poses substantial risks to the organization's security:

• Detection and Response: Without comprehensive logging, it becomes challenging
to detect and respond to security incidents, as there is inadequate data to identify
anomalous behavior or conduct forensic analysis post-breach. The absence of
detailed logs severely hampers incident response and ongoing security monitoring
capabilities.

Affected Systems:
• [HOST] ([IP ADDRESS])

• [HOST] ([IP ADDRESS])

Recommendations:
To mitigate the risks associated with excessive privileges, the following measures are
recommended:

• Enable Comprehensive Logging: Configure the rsyslog service on Ubuntu to
capture all relevant system and authentication logs. In Jenkins, enable audit logging
through the Audit Log Plugin or configure system logs to capture all user activities
and system changes.

• Centralize Log Management: Forward logs from the Ubuntu host and Jenkins
service to a centralized log server or SIEM solution. This centralization aids in the
secure retention, analysis, and correlation of log data from across the organization's
infrastructure.

• Regular Log Review and Alerting: Implement regular log review processes and
automated alerting for suspicious activities based on log analysis. Use the
capabilities of the SIEM system to set up alerts for indicators of compromise or other
signs of potential security breaches.

 44

Finding: Medium – Unpatched Jenkins Service and
Outdated Plugins
During the assessment, it was noted that the Jenkins version was not up to date and multiple
installed plugins were outdated. This configuration presents a security risk as older versions
of Jenkins and its plugins are known to contain several vulnerabilities that could be exploited
by attackers. If the latest patches are not applied, a system or service can be vulnerable to
attacks using publicly available exploits. Patches and updates are released to address
existing and emerging security threats and to address multiple levels of criticality.

Risk:
Out of date or unpatched services expose the organization to significant risks:

• Multiple Vulnerabilities: These vulnerabilities range from code execution to cross-
site scripting (XSS) and can lead to unauthorized access, data exposure, and
potentially a full system compromise. Attackers can exploit these flaws to gain control
over the Jenkins instance, manipulate build processes, steal sensitive information, or
even use the server as a pivot point to further infiltrate the internal network.

Affected Systems:
• [HOST] ([IP ADDRESS])

Recommendations:
To mitigate the risks associated with an unpatched service, the following measures are
recommended:

• Immediate Update of Jenkins and Plugins: Upgrade the Jenkins server to the
latest version available and ensure that all plugins are updated to their most recent
versions. Regularly check for updates as part of a routine maintenance schedule and
apply them as soon as they are released to address any newly discovered
vulnerabilities.

• Implement a Patch Management Process: Establish a robust patch management
policy that includes monitoring for new releases, timely testing of updates in a staging
environment, and systematic deployment to production systems. Ensure that this
process is automated where possible to maintain the Jenkins environment's security
posture without significant manual overhead.

 45

Finding: Medium – Inadequate Anomaly Detection
As the assessment progressed, a security concern emerged regarding the organization's
monitoring capabilities during low-traffic hours, particularly during the weekends. A
substantial amount of work and activity (e.g., large data transfers, login to multiple servers,
lateral movement) was performed by the WKL engineers during these periods without any
indication of abnormal or unauthorized activities being detected.

Risk:
The absence of effective anomaly detection during low-traffic hours presents significant risks
to the organization:

• Undetected Malicious Developers: The lack of monitoring during low-traffic hours
increases the likelihood of insider threats going unnoticed. Malicious actors, including
employees or contractors, may exploit this period for unauthorized activities, data
exfiltration, or system manipulation.

• Delayed Incident Response: The absence of timely detection during off-peak hours
may lead to delayed incident response efforts, allowing malicious activities to persist
and potentially cause more significant harm to the organization.

• Compliance and Reporting Failures: Failure to monitor during all hours can result
in regulatory compliance violations, as organizations are often required to maintain
continuous monitoring for security and compliance purposes.

Affected Systems:
All systems and data within the organization's network are at risk during low-traffic hours due
to the lack of effective anomaly detection.

Recommendations:
To mitigate the risks associated with inadequate detection capabilities, the following
measures are recommended:

• Enhanced Monitoring Coverage: Implement 24/7 monitoring and anomaly
detection to ensure continuous visibility into network activities. This should include
both automated tools and security personnel oversight.

• Automated Alerts: Configure automated alerts to notify security teams of suspicious
activities immediately, enabling rapid response regardless of the hour.

• Incident Response Plan: Develop and maintain a robust incident response plan that
includes procedures for addressing incidents detected during low-traffic hours.

 46

Finding: Medium – Ineffective Firewall Configuration
During the assessment, WKL observed that the organization's firewall configuration lacked
sufficient outbound traffic restrictions. This allowed simulated data exfiltration attempts to
succeed, as outbound traffic from the internal network to external destinations was not
adequately monitored or restricted. A properly configured firewall is essential for controlling
both inbound and outbound network traffic to protect against unauthorized access and data
exfiltration. The absence of effective outbound traffic restrictions in the firewall configuration
presents a significant security risk.

Risk:
Ineffective firewall configurations can leave an organization vulnerable to a range of cyber
threats:

• Unauthorized Access: Without proper inbound rules, attackers can gain
unauthorized access to network resources. This can lead to data breaches, system
compromise, and other malicious activities.

• Data Exfiltration: Inadequate outbound rules can allow sensitive data to be sent out
of the network without detection. Attackers can exploit this to steal confidential
information, intellectual property, or customer data.

Affected Systems:
• [CLIENT] network

Recommendations:
To mitigate the risks associated with inadequate detection capabilities, the following
measures are recommended:

• Implement Egress Filtering: Configure the firewall to restrict outbound traffic to only
authorized and necessary services. This includes specifying allowed destination IP
addresses, ports, and protocols.

• Regular Firewall Audits and Updates: Conduct regular audits of firewall
configurations to ensure they align with the current network architecture and security
policies. Update the firewall rules to adapt to changes in the network or threat
landscape.

• Advanced Firewall Features: Utilize advanced firewall features such as Deep
Packet Inspection (DPI), application-aware filtering, and intrusion prevention systems
(IPS) for more granular control and monitoring of network traffic.

 47

Finding: Medium – Improper HTTPS Inspection
During the assessment, WKL discovered that the organization's network security systems
failed to effectively inspect HTTPS traffic. This was evidenced by the successful operation of
a C2 beacon using HTTPS to communicate with external servers. The use of HTTPS by the
C2 beacon to evade detection suggests that current security measures are insufficient in
analyzing encrypted traffic. Proper inspection of HTTPS traffic is crucial for identifying and
mitigating threats that may be concealed within encrypted communications. Failure to
adequately inspect HTTPS traffic allows malicious activities to go undetected, compromising
network security. Implementing the recommended measures for effective HTTPS inspection
will significantly enhance the organization's ability to detect and mitigate threats hidden
within encrypted traffic, thereby strengthening its overall security posture.

Risk:
Improper HTTPS inspections present a significant risk as attackers can leverage encrypted
channels to conduct malicious activities without triggering security alarms.

Affected Systems:
• [CLIENT] network.

Recommendations:
To mitigate the risks associated with inadequate detection capabilities, the following
measures are recommended:

• Implement HTTPS Inspection Capabilities: Deploy security appliances capable of
performing SSL/TLS interception and inspection. This includes decrypting, analyzing,
and then re-encrypting HTTPS traffic to identify potential threats.

• Maintain Privacy and Compliance: Ensure that the HTTPS inspection process
complies with privacy laws and regulations. Sensitive data should be handled
appropriately to maintain confidentiality.

• Regular Certificate and Key Management: Implement robust management of
digital certificates and keys used for decrypting HTTPS traffic to prevent
unauthorized access and ensure integrity.

• Integrate with Existing Security Systems: Ensure that the HTTPS inspection tool
is integrated with other security systems such as firewalls, intrusion detection
systems (IDS), and security information and event management (SIEM) systems for
comprehensive monitoring.

 48

Finding: Low – SSH Root Login
Within the organization's Linux server environment, WKL observed that Linux servers permit
remote SSH root login. The presence of remote SSH root login on certain servers introduces
a security vulnerability that could potentially be exploited for unauthorized access and
system compromise.

Risk:
Enabling remote SSH root login on any server increases the organization's exposure to
security risks:

• Direct Root Access: Allowing remote SSH root login provides attackers with direct
access to the system's highest privileges, making it easier for them to move laterally
across Linux servers.

• Audit Trail Impact: Permitting root login can make it more challenging to track and
attribute actions performed by privileged users, impacting incident investigation and
accountability.

Affected Systems:
The following Linux servers are affected:

• [HOST] ([IP ADDRESS])

• [HOST] ([IP ADDRESS])

Recommendations:
To mitigate the risks associated with SSH Root logins, the following measures are
recommended:

• Disable Remote Root Login: For security best practices, disable remote SSH root
login on all Linux servers. Users should log in using their own accounts and then use
commands such as ‘sudo’ or ‘su’ to elevate privileges as needed.

• Use Key-Based Authentication: Promote the use of key-based authentication for
SSH, which enhances security by eliminating the need for password-based logins.

• Implement Strong Access Controls: Restrict SSH access to authorized personnel
only, employing role-based access control and the principle of least privilege.

• Regular Security Audits: Conduct regular security audits to ensure compliance with
secure SSH login practices and promptly address any deviations.

 49

• Logging and Monitoring: Implement comprehensive logging and monitoring
solutions to track SSH access and detect suspicious activities

 50

Conclusion
In conclusion, WKL’s Malicious Developer Assessment has provided a comprehensive view
of potential vulnerabilities that could be exploited by malicious insiders. By adopting the
mindset of a developer seeking to exploit internal systems and sensitive information, we
have successfully simulated a range of threat scenarios. These simulations have revealed
critical insights into areas of concern that require immediate attention and action.

Throughout the assessment, WKL strategically executed objectives that mirror the actions of
a malicious developer. The completed objectives of gaining administrative access to critical
systems, accessing sensitive information, and being positioned to steal valuable intellectual
property, underscore the importance of addressing both technical and behavioural
vulnerabilities within your organization's security framework.

The collaborative effort between your team and ours has been instrumental in the success of
this assessment. Our joint commitment to identifying and understanding potential risks has
paved the way for targeted recommendations that align with your specific security context.
We appreciate your dedication to a proactive and forward-thinking security approach.

As we move forward, we strongly advise implementing the actionable recommendations
provided in this report. By doing so, you can significantly enhance your organization's ability
to detect, prevent, and respond to insider threats. Prioritizing security measures that address
both technical controls and user behaviour will contribute to a more robust and resilient
security posture.

We extend our gratitude for entrusting us with this crucial assessment. Our commitment to
assisting you in safeguarding sensitive assets and maintaining a strong security stance
remains unwavering. Should you require further guidance, support, or clarification, our team
is readily available to assist.

 51

Appendix A: Artifacts
WKL conducts thorough testing with a dedicated emphasis on minimizing any potential
impact on the client environment. However, it's essential to acknowledge that certain
artifacts may be generated during the testing process, which will necessitate attention from
the client once the assessment is concluded. The following artifacts have been identified and
should be addressed by the client:

Assessment Artifacts
1. C2 Domain:

• [IP ADDRESS]

2. Jenkins User Account Information:

• User Account: [ACCOUNT NAME]

3. Payload Details:

• Payload Location: [FILE PATH]

4. Payload Details:

• Payload Location: [FILE PATH]

5. Compromised Hosts with C2 Beacon:

• Host: [HOST]

• Host: [HOST]

These artifacts represent the key elements involved in the conducted assessment. While
WKL places paramount importance on minimizing any disruptions, it is crucial for the client
to consider these artifacts as part of their post-assessment responsibilities. Addressing these
artifacts promptly and appropriately will contribute to a comprehensive and effective
assessment process. Should you require guidance or assistance in handling these artifacts,
our team is readily available to provide support and recommendations.

 52

Appendix B: Risk Profile
During this assessment, information was collected that highlights several vulnerabilities
threatening [CLIENT]’s systems. This vital insight allowed our consultants at White Knight
Labs to form an accurate representation of [CLIENT]’s current security posture. To evaluate
the probability of an attack and the prospective consequences of a breach, [CLIENT] should
carry out an additional examination to discern the criticality of both system and data.

Upon completion of the technical segment of the assessment, the consultants at White
Knight Labs calculated the "Risk Score." The subsequent chart explains how White Knight
Labs assigns these Risk Score levels. The definitions are influenced by the Penetration
Testing Execution Standards (PTES) Information Security Risk Rating Scale. White Knight
Labs employs the industry-standard risk calculation method, multiplying the potential impact
by the likelihood associated with each finding, considering various criteria. The scoring is
also based on the engineers' professional opinion and the impact of the issues presented.

Rating Likelihood Impact

Critical Almost Certain to Occur: Probability greater than
90%

Severe: Catastrophic financial loss,
long-term reputational damage,
potential legal consequences,
potential loss of life

High Likely to Occur: Probability between 60% and 90% Major: Significant financial loss,
substantial disruption to operations,
potential legal scrutiny

Medium Possible but Not Likely: Probability between 30%
and 60%

Moderate: Noticeable financial loss,
temporary disruption to some
functions, possible customer
dissatisfaction

Low Unlikely to Occur: Probability less than 30% Minor: Minimal financial or
operational impact, easily
recoverable, limited customer or
stakeholder concern

 53

Below are descriptions of each vulnerability classification level:

Critical Risk Findings: These represent vulnerabilities that grant remote attackers root or
administrator capabilities. With this degree of vulnerability, the entire host could be
compromised. Critical risk findings include vulnerabilities that allow remote attackers full read
and write access to the file system, as well as the ability to remotely execute commands as a
root or administrator user. The existence of backdoors or malicious code also falls under this
category.

High-Risk Findings: These vulnerabilities grant attackers limited privileges, not extending to
remote administrator or root user access. High-risk findings may enable attackers to partially
access file systems, such as having full read access without corresponding write
permissions. Any vulnerabilities that reveal sensitive data, like session details or personal
information (e.g., PII or credit card data), are also considered High-risk.

Medium Risk Findings: These vulnerabilities allow attackers to access specific information
on the host, including security configurations. Such exposures could lead to potential misuse
by attackers. Medium risk findings might encompass partial file content disclosure, access to
particular host files, directory browsing, exposure of filtering protocols and security
measures, susceptibility to DoS attacks, or unauthorized exploitation of system or application
functions.

Low Risk Findings: These findings reveal information that could facilitate more targeted
attacks. Examples include directory structures, account names, network addresses, or
internal data about other systems.

Informational Findings: These do not necessarily constitute vulnerabilities but include
information that the application owner should review and analyze. This category highlights
details that may not pose an immediate threat but warrant attention for comprehensive
security awareness.

By categorizing these findings, White Knight Labs provides an organized and clear
assessment of the risk landscape, based on the professional opinions of our engineers and
the impact of the identified issues.

