

 1

[CLIENT]

Azure Penetration Test

[DATE]

 2

Confidentiality Statement
All information in this document is provided in confidence. It may not be modified or
disclosed to a third party (either in whole or in part) without the prior written approval of
White Knight Labs (WKL). WKL will not disclose to any third-party information contained in
this document without the prior written approval of [CLIENT].

Document Control
Date Change Change by Issue

[DATE] Document Created [ENGINEER] V0.1

[DATE] Document Modified [ENGINEER] V1.0

[DATE] Document Published [ENGINEER] V1.1

Document Distribution
Name Company Format Date

[CLIENT CONTACT] [CLIENT] PDF [DATE]

Document Information
Proposal to [CLIENT]

Project Azure Penetration Test

Synopsis [CLIENT] has a requirement for WKL to perform an Azure cloud
penetration test

White Knight Labs Contact Details
Address White Knight Labs

10703 State Highway 198 Guys Mills PA 16327

Contact Tel: +1 (877) 864-4204
Mob: +1 (814) 795-3110
Email: info@whiteknightlabs.com

mailto:info@whiteknightlabs.com

 3

Table of Contents
Table of Contents ... 3

Executive Summary .. 4

Scoping and Rules of Engagement ... 4
[CLIENT] Risk Rating ... 5
Summary of Findings ... 6
Azure Penetration Test Methodology .. 7
Tools Used .. 9

Azure Attack Path ... 10

From Reader to Owner ... 10
From Reader to Intune Admin ... 16
From Reader to AADConnect Code Execution (On-Prem) ... 25
From Reader to Contributor (DevOPS) ... 36

Additional Activities .. 38

Azure Penetration Test Findings .. 60

Finding: Critical – Service Principal Credential Found in Logic App 60
Finding: High – Service Principals with Excessive Privilege .. 63

Finding: High – Basic Auth Enabled on Function App and Publicly Accessible 65
Finding: High – Application Proxy Apps Accessible from Untrusted Location 68
Finding: High – Credentials Leaked in Azure DevOps ... 70

Finding: High – [EDR] Licensing Key Leaked ... 82
Finding: High – Local Admin Credentials Leaked for MAC Devices 84
Finding: High – Automatic Key Rotation Disabled for [NAME] Account 86

Finding: High – High Privilege Users Excluded from MFA Policy 88
Finding: Medium – Publicly Accessible Azure Snapshots Exposing VHD Files 90
Finding: Medium – Public Access Enabled to Key Vaults .. 92
Finding: Medium – Public Access Enabled to Storage Accounts .. 94

Conclusion .. 96

Appendix A: Artifacts .. 97

 4

Executive Summary

Security is a journey, not a destination. One must remain vigilant and continue to invest in
and strive towards a robust security posture. The threat landscape is ever-changing and
malicious actors are always innovating. As the internet becomes more hostile, defenders
must enhance their capabilities as well.

White Knight Labs conducted a cloud penetration test of [CLIENT]’s Azure cloud
infrastructure. This test was performed to assess the defensive posture of [CLIENT]’s cloud
infrastructure and provide security assistance through proactively identifying
misconfigurations, validating their severity, and providing remediation steps to [CLIENT]

The testing was performed between [DATE] and [DATE] and represents a point-in-time look
at the security posture of the client’s Azure cloud infrastructure.

Scoping and Rules of Engagement
While malicious actors have no limits on their actions, WKL understands the need to scope
assessments to complete the assessment in a timely manner and protect third parties not
participating in the engagement. The following limitations were placed upon this
engagement:

Entra ID (Azure) Security Review – The WKL assessor received two accounts within the
client’s Entra ID (Azure) tenant. WKL received these user accounts ([ACCOUNT NAMES])
with two roles assigned:

• GlobalReader
• Reader

The following timeline details the engagement from start to finish:

• Kickoff Call – [DATE]
• Engagement Testing – [DATE] – [DATE]
• Debrief Call – TBD

 5

[CLIENT] Risk Rating

WKL calculated the risk to [CLIENT] based on exploitation likelihood (ease of exploitation)
and potential impact (potential business impact to the environment).

Overall Risk Rating: Critical

KEY
__ Informational

__ Low

__ Moderate

__ High

__ Critical

Exploitation
Likelihood

Potential Impact

 6

Summary of Findings

WKL found that [CLIENT] made solid strides in certain areas:

• Strong Conditional Access Policies defined for accessing DevOps environment
• Strong Azure Policies defined
• Restricted network access on Azure resources such as Key Vault and App Service
• Explicit access required to access application hosted via Application Proxy
• EDR and Network Proxy security controls have been deployed in the environment

There are other areas where [CLIENT] needs to tighten up and continue to invest:

• MFA is disabled for privileged users
• Credentials in cleartext are present in the config and other services
• Audit Enterprise Application permissions

WKL identified the following strategic areas that [CLIENT] should consider as broader
initiatives within the company to improve the overall security picture within Azure:

• Add a custom bad password list
• Enable logging for all resources
• Frequently audit permissions assigned in App Registrations and Enterprise Apps

 7

Azure Penetration Test Methodology

WKL conducted the cloud penetration test against the client’s Azure environment. The Azure
penetration test consisted of the following:

Planning and Scoping: Define the scope of the penetration test, including the Azure
services and resources to be tested. Determine the objectives and goals of the test, such as
identifying vulnerabilities, misconfigurations, or weaknesses. Obtain proper authorization
from the Azure account owner or organization.

Reconnaissance: Gather information about the Azure environment, such as IP ranges,
domain names, and publicly accessible services. Enumerate Azure resources, including
virtual machines, databases, storage accounts, and more.

Vulnerability Analysis: Use automated scanning tools to identify common vulnerabilities in
Azure resources, like insecure configurations or known vulnerabilities in software. Manually
review Azure configurations to identify custom settings or misconfigurations that automated
tools may miss.

Exploitation: Attempt to exploit discovered vulnerabilities to gain unauthorized access or
control over Azure resources. WKL’s engineers are always cautious and obtain consent from
the client to avoid causing damage or disruption to the environment or business.

Post-Exploitation: If exploitation is successful, the engineer will assess the extent of the
compromise and identify potential data exfiltration, lateral movement, persistence, and EOP
(escalation of privilege) opportunities. WKL always documents the steps taken and the
information obtained during the exploitation process.

Reporting: The reporting step is intended to compile, document, calculate risk rate findings,
and generate a clear and actionable report, complete with evidence for the project
stakeholders. The report is delivered via encrypted transmission from WKL. A virtual meeting
will be held with the relevant stakeholders to discuss report findings on a date set forth by
[CLIENT]. WKL considers the reporting phase to be very important; great care is taken to
ensure findings and recommendations are clearly and thoroughly communicated.

 8

From a high level, the main areas that WKL will attack during an Azure penetration test are
the following:

• Identity and Access Management (IAM) – Security recommendations to set identity
and access management policies on an Azure Subscription. Identity and Access
Management policies are the first step towards a defense-in-depth approach to
securing an Azure Cloud Platform environment.

• Microsoft Defender – Recommendations to consider for tenant-wide security
policies and plans related to Microsoft Defender.

• Storage – Security recommendations for setting storage account policies on an
Azure Subscription. An Azure storage account provides a unique namespace to store
and access Azure Storage data objects.

• Database Services – Security recommendations for setting general database
services policies on an Azure Subscription. Subsections will address specific
database types.

• Logging and Monitoring – Security recommendations for setting logging and
monitoring policies on an Azure Subscription.

• Networking – Security recommendations for setting networking policies on an Azure
subscription.

• Virtual Machines – Security recommendations for the configuration of virtual
machines on an Azure subscription.

• Key Vault – Security recommendations for the configuration and use of Azure Key
Vault.

• App Service – Security recommendations for Azure AppService.

 9

The findings of WKL’s testing are summarized in the table below with details given in the
Findings section. Addressing the following would continue to improve [CLIENT]’s security
posture.

Risk Vulnerability

Critical Service Principal Credential found in Logic App

High Service Principals with Excessive Privilege

High Basic Auth Enabled on Function App and Publicly Accessible

High Application Proxy Apps Accessible from Untrusted Location

High Credentials Leaked in Azure DevOps

High [EDR] Licensing Key Leaked

High Local Admin Credentials Leaked for MAC Devices

High Automatic Key Rotation Disabled for [NAME] Account

High High Privilege Users Excluded from MFA policy

Medium Publicly Accessible Azure Snapshots Exposing VHD Files

Medium Public Access Enabled to Key Vaults

Medium Public Access Enabled to Storage Accounts

Tools Used

The following tools were used during the engagement:

• Az PowerShell
• Az Cli
• RoadRecon
• Purple Knight
• Nessus
• Custom PowerShell scripts
• ScoutSuite

 10

Azure Attack Path

The WKL team was provided two users for initiating the testing. Both users had Global
Reader RBAC role in Entra ID (Azure) environment and Reader role on all the Subscriptions.

From Reader to Owner
The WKL team started the assessment by understanding the environment and enumerating
the resources present in each subscription as there are multiple subscriptions in the
“[CLIENT]” tenant.

Multiple Logic Apps were found in the environment, so WKL started going through each
Logic App by viewing the Logic App code. A Logic App named “[NAME]” was found that
contained the service principal Client ID and client secret in cleartext.

Figure 1 – [LOGIC APP NAME] service principal client secret

WKL leveraged the service principal Client ID and client secret to authenticate with Az CLI
and validated that the credentials are working.

 11

Figure 2 - Authenticated with [LOGIC APP NAME] Service Principal

After that, WKL enumerated the API permissions assigned to the Service Principal and
found that it has Application.Read.All, Application.ReadWrite.All, and
Application.ReadWrite.OwnedBy permissions. It can allow us to register any new app in
tenant and add credentials (client secrets, certificates, federated identity) in any application
present in the target tenant.

Figure 3 – [LOGIC APP NAME] API permissions

While enumerating the RBAC roles, WKL found that there is another Service Principal
named “[NAME]” that is granted the “Application Administrator” role in the target
environment.

WKL engineers added client secret to the “[NAME]” application.

 12

Figure 4 - Added client secrets in [NAME] app registration

WKL enumerated the Service Principals and the permissions assigned to all the Service
Principals using the RoadRecon tool. It allowed the team to identify an enterprise app named
“[NAME]” that has Group.ReadWrite.All permissions. It allowed the WKL engineers to add
our users to any non-privileged group.

Note: Non-Privileged Group – Groups that are not assigned any Entra ID (Azure) RBAC
privilege roles.

Figure 5 - Permissions assigned to [NAME] enterprise application

WKL leveraged the existing privileges of the Application Administrator role granted to
Service Principal “[NAME]” and added a new client secret in the Service Principal “[NAME]

 13

Figure 6 - Added Client Secret in the [NAME] Service Principal

After authenticating with the Service Principal using the Client ID and the Client Secret, WKL
created a new group named “WKL_GROUP”.

Figure 7 - Login using [NAME] Service Principal

 14

Figure 8 - Created new group in Entra ID (Azure)

Then WKL added their user to the “WKL_GROUP” to validate the privileges.

Figure 9 - Added user to the WKL_GROUP group

While performing enumeration, it was identified that there is a group named “[NAME]” that
has “Owner” privileges on all the subscriptions in the Tenant. So, WKL added their users to
the “[NAME]” group to escalate their privileges to “Owner”.

Figure 10 - Added user to WKL_GROUP and [NAME] group

 15

Figure 11 - Gained Owner privileges on all the subscriptions

Since WKL managed to gain Owner privileges on all the subscriptions, the ability to execute
system commands was also gained on one domain controller hosted in the Azure Cloud
environment using Invoke-AzRunCommand from Az PowerShell module.

Figure 12 - Executed System Command on [NAME] machine (domain controller)

Since the WKL operators had privileges to execute commands as “NT Authority\System”,
the team was in position dump the “NTDS.dit” file, which is the database file that contains all
the information of the Active Directory including the hashes of all the users/computer object.
[CLIENT] ultimately decided to not have WKL move forward with this attack path.

 16

From Reader to Intune Admin
During enumeration, the WKL team identified an Automation Account named “[NAME]” that
contains multiple credentials objects.

Figure 13 - Credential objects in [NAME] Automation Account

Additional enumeration was performed on the roles assigned to “[NAME]” Automation
Account, and the team discovered that there is a service principal Named “[NAME]” that
has the “Contributor” role assigned.
Since WKL already gained access to the “[NAME]” service principal by adding an additional
client secret, the privileges of “[NAME]” service principal were used to add a client secret in
“[NAME]” service principal.

Figure 14 - Added client secrets in [NAME] app registration

Then WKL authenticated with the “[NAME]” service principal using Az PowerShell module.

 17

Figure 15 - Authenticated with [NAME] Service Principal

WKL listed the automation accounts to which the “[NAME]” Service Principal has privileges.

Figure 16 - Listed all the Automation Accounts that [NAME] Service Principal has access to

WKL then wrote custom PowerShell code to extract all the credentials stored in the
Automation Account credential object.

 18

Figure 17 - PowerShell code to read credentials from the Automation Account credential object

The team created a PowerShell based Runbook named “WKL_TEST_Runbook” in the
Automation Account using the above PowerShell code and executed the Runbook.

 19

Figure 18 - Creating and executing the new Runbook

Once the Runbook execution completed, WKL gained access to all the credentials stored in
the Automation Account credential objects.

 20

Figure 19 - Credentials extracted from the Automation Account credential object

In the screenshot below, WKL gained cleartext credentials for multiple users including the
“[ACCOUNT NAME]” user. The user has [NAME] Admin privileges, which means that the

 21

user can control all the [NAME] policies and execute command/scripts on the machines
integrated with [NAME].

Figure 20 - Credentials extracted from the [NAME] Object

 22

WKL was unable to login to the portal using the [NAME] Admin user’s credential as the MFA
was not configured for the user. WKL can set the MFA from Hybrid Joined device or
Complaint device only.

Figure 21 - Login to Entra ID (Azure) Portal using [NAME] user account

WKL then attempted to register their own device and fake the complaint status in [NAME]
but, due to [NAME] policies, this action failed. However, joining their device to the current
tenant was successful.
WKL used the device code method to authenticate and request an access token that would
have the privileges to join the device in the current tenant. To generate the device code,
WKL wrote custom PowerShell code.

Figure 22 - Device code authentication to request access token for joining the device to Entra ID (Azure)

WKL then used the device code authentication token to request an OAuth access token.

 23

Figure 23 - Device code authentication to request access token for joining the device to Entra ID (Azure)

Then the AADInternals PowerShell module was used to join WKL’s device using the access
token retrieved above.

Figure 24 - Joined WKL VM to Entra ID (Azure)

The screenshot below shows the new WKLVM added to the Entra ID, it’s hostname is [WKL-
NAME].

 24

Figure 25 - Joined WKL VM to Entra ID (Azure)

While accessing the [NAME] Portal via the WKL user, scripts were discovered that contain
sensitive information such as the local administrator user credentials assigned on all the
MAC devices integrated with Intune. WKL also found [CLIENT]’s [EDR] license key that is
used for installing [EDR] on MAC devices.

The following screenshot shows the Local Administrator privilege user credentials configured
on the MAC systems.

Figure 26 - Local Administrator credentials used on MAC devices onboarded on [NAME]

The following screenshot contains the [EDR] installation key.

 25

Figure 27 – [EDR] installation key for MAC devices integrated with [NAME]

From Reader to AADConnect Code Execution (On-Prem)
While enumerating the resources, the WKL team landed on the Function Apps. WKL found
that a few function apps had Hybrid Connection configured in the network configuration.
While enumerating the Hybrid Connection, the Function Apps were identified to have
PSRemoting access to two machines that were most likely present on-premises.

Figure 28 - Hybrid Connection in function app

Looking at the above configuration, the objective was to gain access to the function app. So,
WKL enumerated the RBAC roles assigned on the Function App and identified a service
principal named “[NAME]” that has the “Contributor” role assigned.

 26

So, again the privileges of “[NAME]” service principal were leveraged by adding an
additional client secret to the application object of “[NAME]” using Az CLI and login using
the same credentials.

Figure 29 - Added client secrets to [NAME] app registration and authenticated with [NAME] Service
Principal

WKL used Az PowerShell module to authenticate to the Service Principal.

Figure 30 - Authenticated with [NAME] Service Principal using Az PowerShell module

WKL enumerated the App Settings of “[NAME]” and identified that there were a few secrets
that were stored in the key vaults and a few details were present in the app settings.

 27

Figure 31 - Extracted the application settings from the function app

WKL extracted the publish profile of the Function App that contains the credentials that can
be leveraged to authenticated on the [NAME] Portal, which is the management portal of App
Service and Function App.

Figure 32 - Extracted the publish profile of the function app

Using the above credentials, WKL authenticated to the [NAME] Portal using basic
authentication.

 28

Figure 33 - Access to the function app portal

[NAME] portal has an option where one can execute commands using the PowerShell
console or Command Prompt from the Function App. WKL then leveraged the PowerShell
console to request the access tokens to gain access to the key vault by impersonating the
managed identity of the Function App.

Figure 34 - Requested the access tokens by leveraging managed identities

WKL used the Access Tokens to authenticate in Az PowerShell Module to extract the
secrets from the key vault.

 29

Figure 35 - Leveraged the key vault access token to authenticate

The managed identity of the Function App did not have access to enumerate the key vault,
but it did have the privileges to extract the secrets if the user has all the details. WKL had
already extracted the details from the App Settings of the Function App, so the secrets we
extracted directly by providing the secret names.
Since there were multiple key vaults secret objects, WKL extracted the secrets for each. The
below screenshot shows the secrets extracted from “[NAME]” key vault secret object.

Figure 36 - Extracted secrets from the [NAME] key vault

The following screenshots shows the secrets extracted from “[NAME]” Key Vault Secret
object.

Figure 37 - Extracted secrets from [NAME] key vault

The next screenshot shows the secrets extracted from “[NAME]” key vault secret object.

Figure 38 - Extracted secrets from the [NAME] key vault

The following screenshot shows the secrets extracted from “[NAME]” key vault secret object.

Figure 39 - Extracted secrets from the [NAME] key vault

WKL leveraged the “[NAME]” to gain access to the identity server that was accessible over
the internet and hosted behind App Proxy. But to access the identity portal, the WKL users
had to be added in the “[NAME]” enterprise app.

 30

Figure 40 - Access the Identity Management Portal hosted behind the application proxy

WKL used the portal PowerShell functionality to leverage the Hybrid Connection and gain
access to the systems over PSRemoting. WKL identified that the system has AADConnect
installed, so a custom PowerShell script was leveraged to extract the MSOL_* user account
credentials. To extract the credentials, the “[NAME]” user account had to be used as it was
added to the Local Administrators group in the target system “[NAME]”.
The following screenshot shows the credentials of the MSOL_* account present in the
[NAME] domain.

Figure 41 - Extracted MSOL_* account credentials from AADConnect machine

 31

The next screenshot shows the credentials of the MSOL_* account present in the [NAME]
domain.

Figure 42 - Extracted MSOL_* account credentials from AADConnect machine

WKL also attempted to extract the credentials for the [NAME] user account but faced
multiple challenges. So, the script was split into two parts: the first will extract the credentials
and write it to a file and the second script will trigger the first script using xp_cmdshell
command of MSSQL instance.
The below screenshot shows that WKL executed a PowerShell function locally on the
function app and then executed the function code on the target machine via PSRemoting
that will write the PowerShell script content on the disk.

Figure 43 - Written file on the disk

The following screenshot displays the content of the script file written on the disk.

 32

Figure 44 - Content of the file written on the disk

Since sometimes the function will not run properly to extract the credentials, the command
had to be run multiple times.

Figure 45 - Executed PowerShell function extract to execute the PowerShell script present on the disk
via xp_cmdshell

Once the command was executed, two output files ([NAME.txt], [NAME.txt]) were written to
the disk.

 33

Figure 46 - Output written to the disk

Once the output files were created, WKL read the output files and extracted the username
and the password for the [NAME] account.

Figure 47 - Viewed the output of the file [NAME.txt]

In the screenshot below, the [NAME] user account details are present at the end of the
[NAME.txt] file.

 34

Figure 48 - Viewed the output of the file [NAME.txt] and found the username

Figure 49 - Viewed the output from the [NAME.txt] and found the password

So, the credential was used and authenticated to the Entra ID (Azure) Portal.

Figure 50 - Authenticated with [NAME] account on Entra ID (Azure) portal

WKL used the AADInternals module to list all the Global Admins and attempted to reset the
credentials of the “[NAME]” user. Since the user is a cloud only user, WKL was unable to
reset the credentials by leveraging Sync API calls. But the [NAME] user had the privilege to
reset any AD Sync account in the target tenant.
The Access Token for [NAME] endpoint is requested by leveraging the credentials of the
[NAME] account.

 35

Figure 51 - Authenticated with [NAME] account and request [NAME] access token via AADInternals
module

The screenshot below shows that the AADInternals tool was leveraged to enumerate all the
users that have Global Admin role assigned.

Figure 52 - Enumerated Global Admins using AADInternals module

The next screenshot shows an error was received while trying to reset the credential of the
Cloud Only account. Microsoft Teams has fixed the issue that allowed the [NAME] user
account to reset the password of Cloud Only users. But the [NAME] account can still reset
the credentials of any AD Sync account.

Figure 53 - Tried to change the password for the [NAME] user

 36

From Reader to Contributor (DevOPS)
WKL was granted explicit Reader access to the DevOps organization named “[NAME]” as
the current Conditional Access policies were very stringent where the users can only access
the DevOPS organization from a Hybrid Joined Complaint device or a Domain Joined Non-
Complaint device. There were four users that were excluded from the Conditional Access
policy, but WKL didn’t manage to get the cleartext credentials of those users from any other
Azure Resources.
WKL initiated the assessment by enumerating the projects and the permissions assigned to
users and groups in each project. It was discovered that maximum Repos are created in the
“[NAME]” project. While enumerating the permissions, an Entra ID (Azure) group named
“[NAME]” that had the granted Contributor role was discovered.
There were nested groups added in the Contributor Role. In the below screenshot we can
see that the Contributor Role contained a group name, “[NAME]”.

Figure 54 - Listed all the members in the Contributor role in [NAME] project

Later, when WKL viewed the members in the “[NAME]” group, an Entra ID (Azure) group
named “[NAME]” was found as shown in the following screenshot.

Figure 55 - Listed the members in the [NAME] group assigned Contributor role in the [NAME] project

To escalate privileges and gain Contributor rights in the “[NAME]” project, WKL leveraged
the service principal “NAME” and added WKL users to the “[NAME]” group.

 37

Figure 56 - Added WKL users to the [NAME] Group

After adding our user to the group, additional privileges were gained to create files in the
“[NAME]” project.

Figure 57 - Created a file in the [NAME] project

 38

Additional Activities
This section documents all the additional activities that were performed by the WKL team on
the other Azure resources.

C2 Callback from Azure VM
The WKL team gained control of “[NAME]” service principal by adding a new client secret
using the privileges of “[NAME]” service principal.
Since the “[NAME]” service principal has “Contributor” privileges on the Resource group
named “[NAME]”, system commands can be executed on any virtual machine by leveraging
Invoke-AzRunCommand.
WKL initially leveraged a custom PowerShell script to gain reverse shell of the “[NAME]”
machine on the machine controlled in our cloud environment. The PowerShell script was
executed by leveraging Invoke-AzRunCommand cmdlet.

Figure 58 - Executed PowerShell based reverse shell on [NAME] machine

The screenshot below shows that WKL managed to get the reverse shell on the netcat
listener running on port 443.

Figure 59 - Reverse shell access of [NAME] machine obtained

This screenshot shows the reverse shell obtained with “nt authority\system” privileges.

 39

Figure 60 - Command executed via reverse shell

But immediately after a few commands, the reverse shell was terminated because the
machine had an EDR product installed, and the shell was detected.
WKL leveraged the privileges of “[NAME]” Service Principal that had the “Contributor” role
assigned over “[NAME]” subscription to create a new Resource group and virtual machine
for hosting the C2 (Cobalt Strike) Team Server.
WKL created a Resource Group named “WKL_RG”.

Figure 61 - Created new Resource group

Then WKL created a virtual machine named “wkl_vm_c2”.

 40

Figure 62 - Created new virtual machine

Then, the DNS settings were modified in the VNET to point the machine to the internal DNS
server.

 41

Figure 63 - Configured DNS settings on the virtual machine

WKL then opened HTTP & HTTPS service ports on the virtual machine by modifying the
[NAME] Group.

 42

Figure 64 - Open HTTP & HTTPS ports on the virtual machine

Once the VM setup was complete, the process of installing the C2 (Cobalt Strike) Team
Server began. WKL created a customized loader for loading the Cobalt Strike Shellcode that
would not trigger any alerts in [EDR].
While trying to download the loader on the target machine, a [TOOL NAME] proxy error that
blocks the download of .exe files was observed.

 43

Figure 65 - Failed to download the malicious loader

WKL removed the file extension and then downloaded the file on the target server.

Figure 66 - Downloaded our C2 loaded and written to the disk

Once the file was downloaded, it was renamed and listed on the target machine.

 44

Figure 67 - Renamed our C2 loader file present on the disk

Then WKL executed the malicious file.

Figure 68 - Executed the C2 loader to get the callback

The screenshot below shows a call back was received on the Cobalt Strike C2 instance.

Figure 69 - Callback on our C2 instance

WKL was unable to get the output of any commands from the callbacks. The callback
worked correctly, but most likely the output was not properly received due to [TOOL NAME]
implementation.

 45

Backdoored Cloud Shell Image
WKL managed to gain access to the “[NAME]” service principal that has owner rights on the
Subscription named “[NAME]”.
The subscription contained a Storage Account name “[NAME]” in the cloud shell image of
the user account “[NAME]”. The user is eligible for multiple high privilege roles in Entra ID
(Azure).

Figure 70 - Eligible roles assigned to [ACCOUNT NAME]

Since the user was eligible for multiple high privileges roles in Entra ID (Azure), we deployed
a backdoor in the Cloud Shell image and updated the image file so that, whenever the user
connects to the Cloud Shell, WKL received the complete Azure profile folder access of the
user. The Azure profile contains the token for the user that will allow the Global Admin role to
be activated and the privileges gained. But the user never accessed the Cloud Shell post,
the backdoor was deployed and WKL did not receive the Azure profile folder.
The next screenshot shows the command added in the Bash profile.

 46

Figure 71 - Backdoor deployed in the bash shell

The following screenshot shows the command added in the PowerShell profile.

Figure 72 - Backdoor deployed for PowerShell

 47

Access to other services
While exploring the DevOps repos, WKL discovered several sets of credentials from the
config file. Few of those credentials were working and any users with Reader access can
read those credentials.

Entra ID (Azure) Portal

WKL found some [NAME] user credentials and leveraged them to authenticate on the Entra
ID (Azure) Portal. It did not trigger any MFA prompt and allowed us to access the Portal.

Figure 73 - Cleartext credentials of various users

It is shown in the next screenshot that WKL managed to authenticate to the Entra ID (Azure)
Portal without any MFA requirement.

 48

Figure 74 - Access to the Entra ID (Azure) Portal using [NAME] user account

 49

[EMAIL CLIENT]

A few [EMAIL CLIENT] account credentials were discovered, but those accounts had MFA
enabled, which restricted WKL from authenticating and gaining access to the email services.

Figure 75 - Cleartext credentials of various users

The following screenshot shows that the credentials were valid, and the MFA prompt was
triggered for the user account.

 50

Figure 76 - MFA prompt triggered while accessing [EMAIL CLIENT] with the leaked credentials

 51

[THIRD PARTY]

WKL gained access to the `[NAME]` portal. A prompt popped up requesting expired
credentials be reset for the users.

Figure 77 - Credentials for third party portals

Using the above credentials, WKL authenticated to the third-party portal and was prompted
to change the credentials.

Figure 78 - Access to third party portal [NAME]

 52

WKL tested both users and received the same message that the password was expired.

[THIRD PARTY]

WKL also found an additional third party [NAME] information. WKL identified the request
details, created a request with the valid authentication information, and retrieved the [NAME]
information.

Figure 79 - Access to third party API

 53

[THIRD PARTY]

WKL also found credentials for [SERVICE] in multiple repos in the [NAME] project. The
“[NAME]” user’s credentials were leveraged to send a test email to the WKL user to validate
the credentials using PowerShell command.

Figure 80 - Credentials used to send emails

The custom PowerShell code below was used to authenticate and send the email to the
WKL user.

Figure 81 - PowerShell script used to send email

 54

The following screenshot shows the email from the victim user was received by WKL.

Figure 82 - Received email from the targeted user

 55

[TENENT]

WKL found [TYPE] tenant ([NAME]) service principal credentials. This allowed WKL to
enumerate the user’s accounts present in the tenant.

Figure 83 – [NAME] tenant service principal credentials

WKL used the Az PowerShell module to authenticate using the Service Principal of the
[NAME] tenant Service Principal.

Figure 84 - Authenticated using the service principal of [NAME] tenant

 56

The AZ PowerShell module was used to list the users in the [NAME] tenant.

Figure 85 - Enumerated the users of [NAME] tenant

WKL also enumerated the permission assigned to the Service Principal but there were no
abusable permissions assigned to the Service Principal.

Figure 86 - Enumerated the permission of the Service Principal in [NAME] tenant

 57

[NAME] Database

The WKL team checked the [NAME] credentials and gained access to the [NAME] database
hosted online by leveraging the “Owner” privileges assigned to the users, which provided the
privileges needed to execute commands on any virtual machine hosted in the [CLIENT]
environment.
Multiple Database credentials were found in the DevOps environment. WKL extracted the
credentials from “[NAME]” and used them to access the database instance hosted on-
premises.

Figure 87 – Cleartext database and LDAP credentials from the [NAME] file

The “[NAME]” Azure VM was leveraged to execute the command on the “[NAME]”
database instance. So, WKL enumerated all the databases that are currently present in the
“[NAME]” database.

 58

Figure 88 - List of all the databases

Then WKL enumerated the columns present in the [NAME] Database [NAME] table.

Figure 89 - List of columns present in [NAME] table in [NAME] database

Next, WKL extracted a few rows from the [NAME] table and found sensitive information
about the customer.

 59

Figure 90 - Data present in the [NAME] table

 60

Azure Penetration Test Findings

Finding: Critical – Service Principal Credential Found in
Logic App

Description
The discovery of service principal credentials within a Logic App raises security concerns, as
these credentials are meant for authenticating applications and services. If exposed, they
could potentially be misused, leading to unauthorized access. Regular security assessments
and monitoring are essential to maintain the integrity of authentication information within
Azure Logic Apps.

Impact
The presence of service principal credentials within a Logic App has significant security
implications. If these credentials are compromised, it could result in unauthorized access to
sensitive resources, potentially leading to data breaches or misuse of critical functionalities.
The impact may extend to the confidentiality, integrity, and availability of the Azure
environment, affecting overall system security.

Evidence
This service principal ([NAME]) had API permissions of “Application.ReadWrite.All”, which
allows one to add client secrets in other enterprise apps and app registrations. Finding a
privileged App and adding a client secret can give access to it, which can allow performing
post exploitation.
The following screenshot shows the Logic App “[NAME]” having service principal credentials
in clear text format.

 61

Figure 91 - Hardcoded Client ID and secrets in Logic Apps

Recommendations
For improved security and seamless authentication in your Logic App, it is advisable to
leverage Managed Identity and incorporate it into the HTTP requests within your workflow.
By doing so, you can eliminate the need for explicit credentials in your Logic App, reducing
the risk associated with credential management and enhancing the overall security posture
of your solution.
Below are steps for implementing Managed Identity in the Logic App and granting necessary
permissions:

1. Enable Managed Identity for Logic App
2. Assign required permissions to the Managed Identity
3. Update Logic App HTTP Connection to use Managed Identity
4. Open your Logic App in the Azure Portal
5. Navigate to the HTTP action
6. In the HTTP action, update the authentication method to use Managed Identity
7. Configure Managed Identity in HTTP Request

 62

Please refer to the screenshot below for the implementation.

Figure 92 - Logic APP HTTP Request with Managed Identity

References

• Grant API Permission to Managed Identity Object

https://techcommunity.microsoft.com/t5/azure-integration-services-blog/grant-graph-api-permission-to-managed-identity-object/ba-p/2792127

 63

Finding: High – Service Principals with Excessive
Privilege

Description
The discovery of service principals with excessive privileges poses a significant security risk,
potentially leading to post-exploitation scenarios. Service principals, representing
applications or services in Azure AD, may inadvertently have permissions beyond their
intended scope. This over-entitlement increases the likelihood of unauthorized access, data
breaches, and privilege escalation by malicious actors.

Impact
The existence of service principals with excessive privileges presents a serious security risk,
potentially leading to post-exploitation scenarios. When service principals are granted more
permissions than necessary, it opens avenues for attackers to exploit these privileges after
an initial breach. This could result in unauthorized actions, data compromise, or even
privilege escalation within the environment.

Evidence
WKL observed that certain app registration and enterprise apps have excessive permissions
that can lead to post exploitation.

Instance 1: [NAME] (App Registration)
The screenshot below shows that the app has “Application.ReadWrite.All”, which allows it to
append additional client secrets in other privileged applications and take control over it.

 64

Figure 93 - Service principal with read and write permissions

Recommendations
To mitigate the risk associated with service principals having excessive privileges, it is
crucial to regularly review and minimize permissions to the principle of least privilege. Here
are some recommendations:

• Apply the principle of least privilege when assigning permissions.
• Assign only the minimum permissions required for the service principal to perform its

intended functions.
• Avoid assigning broad permissions, such as “Administrator” roles, unless necessary.
• Avoid assigning privileged API permissions like “Application.ReadWrite.All”, which

can lead to compromising other service principals.
• For service principals that require elevated privileges temporarily, set a limited

lifespan for their permissions.
• Assign roles based on job functions and responsibilities.

References
• Privileged roles and permissions in Microsoft Entra ID

https://learn.microsoft.com/en-us/entra/identity/role-based-access-control/privileged-roles-permissions?tabs=admin-center%20%0c

 65

Finding: High – Basic Auth Enabled on Function App
and Publicly Accessible

Description
WKL discovered that Azure services are publicly accessible without any IP restrictions. This
raises the risk of unauthorized access and potential exploitation, underscoring a security
gap. The absence of IP restrictions implies a broader attack surface and increased
vulnerability. From a penetration testing perspective, this finding emphasizes the importance
of implementing strict access controls to mitigate potential risks associated with publicly
accessible services.

Impact
The impact of finding publicly accessible Azure services without IP restrictions is significant.
It means that anyone, without limitations, could potentially access and interact with these
services. This situation heightens the risk of unauthorized usage, data exposure, and
potential misuse of resources. The absence of IP restrictions broadens the scope for
attackers, increasing the likelihood of security incidents and compromises.

Evidence
WKL observed that the function app “[NAME]” is publicly accessible as shown in the
screenshot below.

Figure 94 - Network setting of function app

Having public access, it was possible to access the [NAME] portal, which allows one to run
commands within the function app. This is shown in the following screenshot.

 66

Figure 95 - Function app [NAME] portal

The following screenshot shows that “Basic Auth Publishing Credentials” is enabled, which
allows basic auth authentication.

 67

Figure 96 - Basic auth publishing credentials settings

Recommendations
To enhance the security posture of your Azure function app service and mitigate the risk
associated with publicly accessible services lacking IP restrictions, it is crucial to implement
IP restrictions and follow security best practices. The following steps are recommended for
securing your Azure function app by addressing absent IP restrictions:

• Navigate to the Azure Portal and sign in with your Azure account.
• Select the desired function app and scroll down to the Settings and click on

‘Networking.’
• Under the ‘Access restrictions’ section, click on ‘Configure Access Restrictions.’
• Click on the ‘Add Rule’ button.
• In the ‘Add Access Restriction’ pane, give the rule a name.
• Choose the action: Allow or Deny.
• Select the priority for the rule, where lower numbers have higher priority.
• Define the IP address or IP range in CIDR format for the allowed or denied traffic.
• Click ‘Add’ to save the access restriction rule.
• Review the summary and click ‘Save’ to apply the changes.

References
• Set up Azure App Service access restrictions

https://learn.microsoft.com/en-us/azure/app-service/app-service-ip-restrictions?tabs=azurecli%20%0c

 68

Finding: High – Application Proxy Apps Accessible from
Untrusted Location

Description
This finding raises a security concern as it implies potential exposure of on-premises
applications to untrusted entities. This finding suggests a need to reassess the Azure
application proxy configuration, ensuring restricted access to trusted networks, and
implementing proper controls to mitigate the risk of unauthorized access or data
compromise.

Impact
The impact of the "Application Proxy Accessible from Untrusted Location" finding is
significant as it exposes on-premises applications to potentially unauthorized access from
untrusted locations. This could lead to unauthorized users gaining entry to sensitive
applications, posing risks to data confidentiality and integrity.

Evidence
WKL observed that the applications proxy can be accessed from any location as it doesn’t
have any IP based restrictions as shown in the following screenshot.

Figure 97 – [NAME] portal accessed from application proxy

 69

Recommendations
Application proxy can be restricted based on IP address. To configure the IP-based access,
please refer to the following steps:

• Go to the Azure Portal.
• In the left-hand navigation pane, select "Azure Active Directory."
• Under the "Security" section, select "Conditional Access."
• Click on "New policy" to create a new Conditional Access policy.
• Under the "Users and groups" tab, specify the users or groups to which the policy

applies.
• Under the "Cloud apps" tab, select the specific application proxy app for which you

want to enforce the policy.
• Under the "Conditions" tab, click on "Locations."
• Choose "Include" and then specify the trusted locations (IP ranges) from which

access is allowed.
• Under the "Access controls" tab, configure the desired access controls, such as

requiring multi-factor authentication or blocking access.
• Under the "Enable policy" tab, choose "Enable policy".
• Review your settings and click on "save" to save the Conditional Access policy.

References
• Using the location condition in a Conditional Access policy

https://learn.microsoft.com/en-us/entra/identity/conditional-access/location-condition

 70

Finding: High – Credentials Leaked in Azure DevOps

Description
This is a security issue where important secret information, like passwords and connection
details, have been accidentally exposed, which can be read by users with the Reader role.
This kind of issue can lead to unauthorized access and data breaches. It's crucial to act
swiftly by reviewing and securing the leaked credentials.

Impact
This issue could compromise the security of applications and services, leading to data
breaches and jeopardizing the integrity of the development pipeline. It can allow the attacker
to gain access to the sensitive information present in other services.

Evidence
Instance 1: Repo – [NAME] ([FILE])
WKL found that repo “[NAME]” is exposing service principal credentials of the [NAME]
tenant.

Figure 98 - Leaked Credentials in [NAME] Repo

 71

Instance 2: Repo – [NAME] ([FILE])
WKL found the vendor account token in [NAME] file.

Figure 99 - Leaked credentials in [NAME] repo

Instance 3: Repo – [NAME] ([FILE])
WKL observed that the repo “[NAME]” is exposing email credentials as shown in the below
screenshot.

Figure 100 - Leaked credentials in [NAME] repo

 72

Instance 4: Repo – [NAME] ([FILE])
WKL observed that the repo “[NAME]” is exposing lot of connection strings of different
services as shown in the screenshot below.

Figure 101 - Leaked credentials in [NAME] repo

Instance 5: Repo – [NAME] ([FILE])
WKL observed that the repo “[NAME]” leaked [NAME] user credential as shown below.

Figure 102 - Leaked credentials in [NAME] repo

 73

Instance 6: Repo – [NAME] ([FILE], [FILE])
WKL observed clear text credentials hardcoded in the [NAME] repo as shown in the below
screenshot.

Figure 103 - Leaked credentials in [NAME] repo

Similarly, WKL found hardcoded connection strings as shown in the screenshots below.

Figure 104 - Leaked credentials in [NAME] repo

 74

Figure 105 - Leaked credentials in [NAME] repo

Instance 7: Repo – [NAME] ([FILE])
WKL observed that the repo “[NAME]” exposed connection strings in an [FILE] as shown in
the below screenshot.

Figure 106 - Leaked credentials in [NAME] repo

 75

Instance 8: Repo – [NAME] ([FILE])
WKL observed that the repo “[NAME]” exposed certain email credentials in [FILE] file as
shown in the screenshot below.

Figure 107 - Leaked credentials in [NAME] repo

 76

Instance 9: Repo – [NAME] ([FILE])
WKL observed that the repo “[NAME]” exposed an Api_Key as shown in the below
screenshot.

Figure 108 - Leaked credentials in [NAME] repo

Instance 10: Repo – [NAME] ([FILE])
WKL observed that the repo “[NAME]” exposed client secrets in the [FILENAME] file as
shown in the screenshot below.

Figure 109 - Leaked credentials in [NAME] repo

 77

Instance 11: Repo – [NAME] ([FILE])
WKL observed that the repo “[NAME]” exposed client secrets in the [FILENAME] file as
shown in the below screenshot.

Figure 110 - Leaked credentials in [NAME] repo

 78

Instance 12: Repo – [NAME] ([FILE])
WKL observed that the repo “[NAME]” exposed connection string and on-prem user
credentials in the [FILENAME] file as shown in the below screenshot.

Figure 111 - Leaked credentials in [NAME] repo

 79

Instance 13: Repo – [NAME] ([FILE])
WKL observed that the repo “[NAME]” exposed email credentials in the [FILENAME] file as
shown in the screenshot below.

Figure 112 - Leaked credentials in [NAME] repo

 80

Instance 14: [NAME] ([SCRIPT])
WKL observed that the pipeline “[NAME]” exposed a [TYPE] token in a PowerShell script
task as shown in the below screenshot.

Figure 113 - Leaked credentials in [NAME] repo

Recommendations
To mitigate the risk of credentials and connection strings being leaked or hardcoded in Azure
DevOps, it is crucial to follow secure coding practices and implement robust security
measures. The following are recommendations to safeguard sensitive information in your
Azure DevOps environment:

Use Azure Key Vault:

• Leverage Azure Key Vault to store and manage sensitive information such as
passwords, connection strings, and API keys.

• Integrate your application with Azure Key Vault to retrieve secrets at runtime.

Configure Access Controls for Key Vault:

• Implement proper access controls on your Azure Key Vault to restrict access only to
the necessary individuals or services.

• Use Azure AD roles and permissions to manage access.

Link Azure DevOps Pipelines with Key Vault:

• Utilize Azure DevOps service connections to link your pipelines with Azure Key Vault.
• Allow pipelines to securely retrieve secrets during the build and release process.

 81

Azure DevOps Variable Groups:
• Create Azure DevOps variable groups to centralize the management of sensitive

variables.
• Link variable groups to your build and release pipelines.

Pipeline Variables:

• Use Azure DevOps pipeline variables to store sensitive information within your
pipeline.

• Avoid inline script variables that expose sensitive information in logs.

Securely Inject Secrets:

• When injecting secrets into your application or scripts, use secure methods provided
by your programming language or runtime environment.

• Avoid exposing secrets in plain text in configuration files.

Secure Code Reviews:

• Incorporate security checks into your code review process.
• Use automated tools to scan for hardcoded secrets or other security vulnerabilities.

Avoid Hardcoding Secrets:

• Refrain from hardcoding sensitive information directly into your code.
• Use environment variables, configuration files, or external services for dynamic

retrieval.

References
• Set secret variables

https://learn.microsoft.com/en-us/azure/devops/pipelines/process/set-secret-variables?view=azure-devops&tabs=yaml%2Cbash

 82

Finding: High – [EDR] Licensing Key Leaked

Description
The discovery of a "Licensing Key Leaked in Microsoft Admin Center" indicates a critical
security lapse, where a sensitive licensing key was inadvertently exposed within the
administrative interface.

Impact
The impact of a "Licensing Key Leaked in Microsoft Admin Center" is substantial, posing
risks of attackers leveraging the license key to install an EDR agent in the test machine to
test their payloads before executing on the target machine with the same policies.

Evidence
WKL observed that, in the Admin center, there are certain scripts being used for devices
where one of the script’s “[NAME]” leaked the licensing key for [EDR] as shown in the below
screenshot.

Figure 114 – Licensing key exposed in Device script

 83

Recommendations
It is recommended to avoid hardcoding license keys in the script files.
Additionally, WKL recommends restricting access to the [NAME] portal to only limited Admin
users via Conditional Access Policy (CAP).
The following are steps to configure the CAP for restricting the [NAME] Portal:

1. Login to Entra ID (Azure) Portal.
2. Search for Microsoft Entra ID in the search field.
3. Click on ‘Security’.
4. Click on ‘Conditional Access’.
5. Click on ‘Create new policy’.
6. Enter the Policy name in the ‘Name’ field.
7. In the ‘Users’ section, select ‘All users’ in the include tab and select admin users in

the Exclude tab.
8. In the Target resources section, click on ‘Select apps’, then click on ‘Select’, then

search for ‘Microsoft [NAME] Application’, and select the same.
9. In the Grant section, select the ‘Block access’ radio button.
10. In the Enable policy section, select ‘On’.
11. Click on the ‘Create’ button.

Note: Please evaluate the above suggested Conditional Access Policy before applying.

 84

Finding: High – Local Admin Credentials Leaked for
MAC Devices

Description
The discovery of a "Credential Leaked in Microsoft [NAME] Admin Center" indicates a critical
security lapse where Local Admin Credentials for MAC devices are exposed within the
administrative interface.

Impact
The impact of Local Admin credentials leaked in Microsoft [NAME] Admin Center is
substantial, posing risks of gaining unauthorized admin level access. This finding requires
immediate attention to prevent any exploitation and to safeguard the security and
compliance of Microsoft [NAME].

Evidence
WKL observed that, in the Admin center, there are certain scripts being used for devices
where one of the scripts “[NAME] leaked the Local Admin credentials for MAC devices as
shown in the following screenshot.

Figure 97 - Credentials exposed in [NAME] Portal

 85

Recommendations
It is recommended to avoid hardcoding the credentials in the script files.
Additionally, WKL recommends restricting access to the [NAME] portal to only limited Admin
users via Conditional Access Policy (CAP).
Steps to configure the CAP for restricting [NAME] portal

1. Login to Entra ID (Azure) Portal.
2. Search for Microsoft Entra ID in the search field.
3. Click on ‘Security’.
4. Click on ‘Conditional Access’.
5. Click on ‘Create new policy’.
6. Enter the Policy name in the ‘Name’ field.
7. In the ‘Users’ section, select ‘All users’ in the include tab and select admin users in

the Exclude tab.
8. In the Target resources section, click on ‘Select apps’, then click on ‘Select’, then

search for ‘Microsoft [NAME] Application’, and select the same.
9. In the Grant section, select the ‘Block access’ radio button.
10. In the Enable policy section, select ‘On’.
11. Click on the ‘Create’ button.

Note: Please evaluate the above suggested Conditional Access Policy before applying.

 86

Finding: High – Automatic Key Rotation Disabled for
[NAME] Account

Description
Microsoft Entra ID Single Sign-on (SSO) is an authentication method that allows users to
sign into multiple applications using single credentials and the users do not have to supply
credentials in every application. An additional machine account ([NAME]) is created on the
on-premises Active Directory Forest environment for signing all the Kerberos requests
needed for successful SSO implementation.

Impact
The absence of automatic key rollover poses significant security risks to the Entra ID (Azure)
environment. Without periodic rotation of the Kerberos decryption key, the environment
becomes vulnerable to various attacks targeting Kerberos authentication, including pass-the-
ticket attacks and Golden Ticket attacks. These attacks can lead to unauthorized access to
sensitive resources, data breaches, and compromise of the entire Active Directory domain.

Evidence
WKL used the AADInternals tools to check if SSO was in use.

Figure 98 - SSO is in use

WKL observed that the on-premises synced accounts for “[DOMAIN]” and “[DOMAIN]”
domains use credentials that are not rotated.

 87

Figure 99 – Roll over Kerberos decryption keys

Recommendations
To enable key roll over, the following steps must be executed from the [NAME] server.

1. Download and install Azure AD PowerShell module.
2. Open PowerShell console with Administrator Privileges.
3. Go to ‘C:\Program Files\ Microsoft Azure Active Directory Connect’ directory.
4. Import the script using PowerShell command Import-Module .\AzureADSSO.psd1.
5. Run ‘New- AzureADSSOAuthenticationContext’; it will pop up a new window for

authentication. Login with Global Admin or Hybrid Identity Administrator privileges.
6. Run ‘$creds = Get-Credential’ command. It will pop up a new window for entering

credentials. Enter Domain Admin credentials.
7. Run ‘Update-AzureADSSOForest -OnPremCredentials $creds’.

Repeat the above steps for all the AD Forest where SSO is setup.

References
• Kerberos decryption key

https://learn.microsoft.com/en-us/entra/identity/hybrid/connect/how-to-connect-sso-faq#how-can-i-roll-over-the-kerberos-decryption-key-of-the--azureadsso--computer-account-

 88

Finding: High – High Privilege Users Excluded from
MFA Policy

Description
This finding indicates that certain privileged accounts within the Azure environment have
been exempted from multi-factor authentication (MFA) requirements. This exemption poses
a significant security risk as it allows these accounts to authenticate with only a single factor,
potentially exposing them to unauthorized access and compromise.

Impact
Exempting high privilege users from MFA increases the vulnerability of these accounts to
credential theft, phishing attacks, and other forms of unauthorized access. Compromising
such accounts can result in unauthorized access to critical resources, data breaches, and
significant harm to the organization's security posture and reputation.

Evidence
WKL observed that the Conditional Access policy has excluded certain users from muti-
factor authentication, which includes Admin users as well including “[USERNAME]” as
shown in the below screenshot.

Figure 100 - MFA Conditional Access policy

 89

In the screenshot below it can be observed that “[USERNAME]” is the global admin user that
was excluded from MFA policy.

Figure 101 - Global Admin user [NAME]

Recommendations
Immediately enforce multi-factor authentication (MFA) for all high privilege users, ensuring
that they are required to authenticate using multiple factors before accessing any Azure
resources or limit the access from restricted IPs without MFA.

 90

Finding: Medium – Publicly Accessible Azure Snapshots
Exposing VHD Files

Description
This finding highlights instances where Azure snapshots are accessible to the public,
potentially allowing users to download virtual hard disk (VHD) files from untrusted locations.
This misconfiguration poses a significant security risk as it exposes sensitive data stored
within the VHD files to unauthorized access and potential data breaches.

Impact
The impact of publicly accessible Azure snapshots exposing VHD files is significant. It
includes the risk of unauthorized access to sensitive data, potential compliance violations
leading to fines and reputational damage, as well as the possibility of data loss or corruption,
disrupting business operations and causing financial losses. It's crucial to address this
finding promptly to mitigate these risks and safeguard the organization's data, compliance
standing, and reputation.

Evidence
WKL observed that snapshots are publicly accessible as they can be downloaded from any
location as shown in the following screenshot.

Figure 102 - Azure Snapshot Network Settings

 91

Recommendations
Immediately secure Azure snapshots by restricting public access to prevent unauthorized
download of VHD files. Utilize Azure role-based access control (RBAC) to limit access to
authorized users and implement network security measures, such as virtual network service
endpoints or private links, to restrict access to specific networks.
To secure Azure snapshots and restrict public access to VHD files, follow these steps:

1. Log in to the Azure portal with appropriate credentials.
2. Go to the Azure Snapshots service.
3. Choose the specific snapshot for which you want to restrict public access.
4. In the snapshot's settings, navigate to the Networking tab.
5. Select ‘Disable public access and enable private access’ and configure the

authorized dish access then click Save.

 92

Finding: Medium – Public Access Enabled to Key Vaults

Description
"Public Access Enabled to Key Vaults" describes the process of granting broader access to
secure repositories storing sensitive data like cryptographic keys and certificates. However,
it's important to note that key vaults typically shouldn't be made public due to the security
risks involved. Instead, access should be carefully managed and only accessible from a
trusted location.

Impact
Enabling public access to key vaults poses severe security risks, potentially leading to
unauthorized use of critical data and subsequent breaches. Thus, maintaining key vaults as
private and implementing strict access controls is crucial for safeguarding sensitive
information and ensuring data integrity.

Evidence
WKL observed that certain key vaults didn’t have network restriction and were publicly
accessible as shown in the following screenshot.

Figure 103 - Public access on key vault

 93

WKL observed that the following key vaults do not have network restriction:
• [KEY VAULT NAME]
• [KEY VAULT NAME]
• [KEY VAULT NAME]
• [KEY VAULT NAME]
• [KEY VAULT NAME]
• [KEY VAULT NAME]
• [KEY VAULT NAME]
• [KEY VAULT NAME]

Recommendations
WKL recommends adding private access to Key Vault Networking using the following steps:

1. Log in to the Azure Portal with appropriate credentials.
2. Go to the Azure Key Vault service.
3. Choose the specific key vault for which you want to add private access.
4. In the key vault's settings, navigate to the Networking tab.
5. Click on ‘Private endpoint connections’.
6. Click ‘Add’ to create a new private endpoint connection.
7. Choose the appropriate subscription, virtual network, and subnet for the private

endpoint.
8. Select the appropriate private DNS zone group if using Azure Private DNS.

 94

Finding: Medium – Public Access Enabled to Storage
Accounts

Description
The finding "Public Access Enabled to Storage Accounts" indicates that certain Azure
storage accounts have been configured to allow public access. This configuration can lead
to significant security risks, as it may expose sensitive data stored within the storage
accounts to unauthorized access from the internet.

Impact
Enabling public access to storage accounts increases the likelihood of unauthorized access,
data breaches, and potential exploitation by malicious actors. Exposing sensitive data to the
internet without proper authentication and authorization controls violates security best
practices and regulatory compliance requirements.

Evidence
WKL observed that certain storage accounts do not have network restrictions enabled and
are publicly accessible as shown in the screenshot below.

Figure 104122 - Public access is enabled for storage accounts

 95

The following storage accounts do not have network restriction:

• [STORAGE ACCOUNT NAME]
• [STORAGE ACCOUNT NAME]
• [STORAGE ACCOUNT NAME]
• [STORAGE ACCOUNT NAME]
• [STORAGE ACCOUNT NAME]
• [STORAGE ACCOUNT NAME]
• [STORAGE ACCOUNT NAME]
• [STORAGE ACCOUNT NAME]

Recommendations
WKL recommends taking the following steps to disable or modify public access:

• Log in to the Azure Portal with appropriate credentials.
• Go to the Azure Storage Accounts service.
• Choose the specific storage account for which you want to enable network

restrictions.
• In the storage account's settings, navigate to the Networking tab.
• Under the Networking tab, you'll find options to configure network restrictions.
• Select the appropriate network restriction option based on your requirements:

o Allow access only from selected networks.
o All networks: Allow access from all networks.
o Public endpoint: Enable/disable public access to the storage account.

• If you choose "Selected networks," specify the networks from which you want to
allow access to the storage account.

• You can specify virtual networks, IP addresses, or ranges to restrict access to
specific trusted sources.

 96

Conclusion
In conclusion, the Azure Penetration Assessment has provided a comprehensive view of
potential misconfigurations that could be abused by malicious insiders. By adopting the
mindset of an insider seeking to abuse internal systems and sensitive information, WKL has
successfully simulated a range of threat scenarios. These simulations have revealed critical
insights into areas of concern that require immediate attention, action, and remediation
efforts.

Throughout the assessment, WKL strategically executed objectives that mirror the actions of
a malicious insider. These objectives, such as gaining administrative access to critical
resources, accessing sensitive data, and finding valuable intellectual property, show the
importance of addressing both technical and behavioral vulnerabilities within your
organization's security framework.

As you move forward, WKL strongly advises implementing the actionable recommendations
provided in this report. By doing so, you can significantly enhance your organization's ability
to detect, prevent, and respond to insider threats. Prioritizing security measures that address
both technical controls and user behavior will contribute to a more robust and resilient
security posture.

We extend our gratitude to you for entrusting us with this crucial assessment. Our
commitment to assisting you in safeguarding sensitive assets and maintaining a strong
security stance remains unwavering. Should you require further guidance, support, or
clarification, our team is readily available to assist.

 97

Appendix A: Artifacts
WKL conducts thorough testing with a dedicated emphasis on minimizing any potential
impact on the client environment. However, it's essential to acknowledge that certain
artifacts may be generated during the testing process, which will necessitate attention from
the client once the assessment is concluded. The following artifacts have been identified and
should be addressed by the client:

Assessment Artifacts

• Resource Group – WKL_RG
• App Registration and Service Principal

o [NAME]
o [NAME]

• Credentials added in the App Registration and Service Principals
o [NAME]
o [NAME]
o [NAME]
o [NAME]
o [NAME]
o [NAME]
o [NAME]
o [NAME]
o Entra ID (Azure) Group – [NAME]

• User Accounts
o wkl_tester1@[DOMAIN].com
o wkl_tester2@[DOMAIN].com

• Virtual Machine – [VM]
• Automation Account Runbook - WKL_TEST_Runbook
• Devices

o [DEVICE]
o [DEVICE]

• Cloud Shell Image from Storage Account – [VALUE]

These artifacts represent the key elements involved in the conducted assessment. While
WKL places paramount importance on minimizing any disruptions, it is crucial for the client
to consider these artifacts as part of their post-assessment responsibilities. Addressing these
artifacts promptly and appropriately will contribute to a comprehensive and effective
assessment process. Should you require guidance or assistance in handling these artifacts,
our team is readily available to provide support and recommendations.

 98

Additional recommended changes

1. Rotate all the credentials that are exposed in cleartext such as SQL, Users, Service
Principal etc.

2. Rotate Encryption Key Present in Function App Source Code – [NAME]
3. Rotate Keys for all the resources such as Storage Account, Relay, etc., so that the

connection strings are newly generated.

