

[Client]

Mobile Application Penetration Test Report

[date]

1

Confidentiality Statement

All information in this document is provided in confidence. It may not be modified by or

disclosed to a third party (either in whole or in part) without the prior written approval of

White Knight Labs (WKL). WKL will not disclose to any third-party information contained in

this document without the prior written approval of [client].

Document Control

Date Change Change By Issue

[date] Document Created [engineer] V0.1

[date] Document Edited [editor] V1.0

[date] Document Published [engineer] V1.1

Document Distribution

Name Company Format Date

[client contact] [company] PDF [date]

White Knight Labs Contact Details

Address White Knight Labs

10703 State Highway 198 Guys Mills PA 16327

Contact Tel: +1 (877) 864-4204

Mob: +1 (814) 795-3110

Email: info@whiteknightlabs.com

mailto:info@whiteknightlabs.com

2

Table of Contents

Executive Summary .. 3

Scoping and Rules of Engagement ... 3

Summary of Findings ... 7

Application Testing Methodology ... 9

Application Testing Findings ... 13

Finding: Medium – Sensitive Data in Logs ... 13

Finding: Medium – Insecure Storage of MFA "Remember Me" .. 15

Finding: Low – Hard-Coded Cryptographic Key ... 18

Finding: Low – TLS Configuration Weaknesses .. 21

Finding: Low – Lack of Anti-Instrumentation/Jailbreak Detection 25

Finding: Low – Lack of Certificate Pinning ... 27

Appendix A: Artifacts ... 29

Appendix B: Risk Profile .. 30

3

Executive Summary

Security is a journey, not a destination. Companies must remain vigilant and strive towards a

robust security posture. The threat landscape is ever-changing and malicious actors are

always innovating. As the internet becomes more hostile, defenders must enhance their

capabilities and continue to invest in security.

[Client] engaged White Knight Labs (WKL) to conduct a mobile application penetration test

of their mobile application. Client’s mobile application provides [company details]. Over the

course of this test, WKL was tasked with proactively identifying any vulnerabilities, validating

their severity, and providing recommended remediation steps. [Client] seeks to improve its

defensive posture and better protect its sensitive information and infrastructure from

potential attacks.

The testing was performed between [date] and [date]. This testing represents a point-in-time

look at the security posture of the mobile application.

Scoping and Rules of Engagement

While malicious actors are not constrained, WKL understands the need to establish a scope

for each assessment. This ensures that work can be completed in a timely manner while

protecting third-parties not participating in the engagement. WKL conducted a black box

mobile application test with several sets of user credentials. The following briefly elaborates

on these techniques:

 Black-Box Testing: In a black-box engagement, the consultant does not have

access to any internal information such as source code, APIs, extensive details on

the technology stack, and is not granted internal access to the client's network or

web servers. It is the job of the consultant to perform all reconnaissance to obtain the

sensitive knowledge needed to proceed, which places them in a role as close to the

typical attacker as possible.

 User Credentials: [Client] provided WKL with several sets of user credentials with

the permissions and functionality normally granted to its clients. This mimics

scenarios where malicious actors (1) may obtain user credentials by compromising a

client account or (2) may exploit vulnerabilities related to vertical or horizontal

business logic in order to perform unauthorized changes. These credentials, in

conjunction with MFA access, allowed WKL to assess [client]’s resilience to

authenticated attacks in addition to unauthenticated attacks.

 Registration Test Data: [Client] provided WKL with several sets of test data, such

as [examples] in order to register new accounts. This allowed consultants to test not

only authentication and authorization but also registration from the perspective of a

new user with valid data.

4

WKL evaluated the iOS application version [#] pointing to the test API located at [address].

This IPA was sideloaded onto a jailbroken iPhone 8 running iOS 15.8. The client application

was thoroughly assessed, as well as the supporting backend API endpoints. The backend

API consisted of approximately [#] API endpoints, of which all requests and responses were

encrypted with [specific] encryption. When decrypted, all messages were [specific type], and

plain responses.

In addition, the source code was provided. WKL performed static analysis and a manual

source code review. Unless otherwise noted, the following components were determined by

[client] to be out of scope:

 [component]

 [component]

 [component]

 [component]

 [component]

The following timeline details the entire engagement of the [client] application:

 Kickoff Call: [date]

 Engagement Testing: [date] – [date]

 Report Delivery: TBD

 Debrief Call – TBD

WKL’s security assessment includes a detailed approach that merges our standard testing

methodology with client-specific use cases. This strategy is crafted to deliver a nuanced

assessment, ensuring thorough coverage of general security vulnerabilities as well as the

particular aspects that concern the client.

Client-Specific Use Cases Testing Table:

 Test Case Description Tested

(Yes/No)

Horizontal Privilege Escalation Ensure that business logic cannot be exploited to allow

users to modify other client accounts or perform

transactions without authorization.

Yes

Insecure Direct Object Reference Ensure that numerical user IDs cannot be modified in

order to perform actions or enumerate accounts

attackers do not have access to.

Yes

5

Data in Transit Ensure that certificate validation, encryption, and iOS

application transport security (ATS) are enforced. Data

in transit protections need to be in to place to prevent

MITM attacks.

Yes

Data at Rest Ensure that moderate and highly sensitive data are

either not stored at rest, or are properly stored in the

Keychain.

Yes

 Client-Side Weaknesses

Ensure that the client enforces binary protections and

does not suffer from remote code execution (RCE) or

any other logical flaw that relies on client instead of

server-side logic.

Yes

Improper Cryptography

Ensure that the client does not hard-code cryptographic

keys or make use of weak ciphers, hashes, or

proprietary cryptographic algorithms.

Yes

6

[Client] Risk Rating

WKL calculated the risk to [client] based on exploitation likelihood (ease of exploitation) and

potential impact (potential business impact to the environment). Overall, the application is at

a relatively low level of risk and is in line with typical configurations for mobile applications.

Some areas of improvement are important to address, data storage practices in particular.

[These types of] applications should be held to the highest level of scrutiny for security, due

to the sensitive nature of [data] handled. WKL recommends that the two medium-severity

issues be prioritized, then the low-severity issues be addressed as defense-in-depth best

practices to harden the overall security posture of the [client] mobile application.

Overall Risk Rating: Moderate

KEY

__ Informational

__ Low

__ Moderate

__ High

__ Critical

Exploitation

Likelihood

Potential Impact

7

Summary of Findings

The security assessment conducted has identified key areas where [client] could enhance its

security posture. WKL recommends that investments be directed towards the following

initiatives for improvements.

Sensitive Data Storage:

 The application makes use of several insecure locations for data storage of

moderately sensitive data. It also uses hard-coded cryptographic key values that can

be extracted from the application at runtime or through static analysis. The

development team should first consider whether the data needs to be stored on the

device, then use the Keychain for all moderate or sensitive data. Keys should never

be hard-coded, but if they need to be stored on the device, they should also use the

Keychain.

Defense in Depth Protections:

 The application lacks defense-in-depth protections that will harden the overall

security posture. These protections include certificate pinning and anti-

tampering/anti-jailbreak protections. These will mitigate the opportunity for attackers

to exploit MITM attacks via a compromised CA, or to obtain sensitive PCI or

credentials on a rooted device.

TLS weaknesses:

 The application API serves TLS 1.0 and TLS 1.1, as well as outdated and potentially

vulnerable ciphers. These are long out of compliance for PCI and contain known

vulnerabilities.

8

The findings from the security testing are categorized in the table provided, with in-depth

analysis available in the Findings section of this report. By addressing the vulnerabilities

listed, [client] can continue to improve its defense mechanisms and maintain a strong

security framework.

Risk Vulnerability

Medium
Sensitive Data in Logs

Medium
Insecure Storage of MFA "Remember Me"

Low
Hard-Coded Cryptographic Key

Low
TLS Configuration Weaknesses

Low
Lack of Anti-Instrumentation/Jailbreak

Detection

Low
Lack of Certificate Pinning

9

Application Testing Methodology

WKL defines an application security assessment as an assessment designed to highlight

potential security vulnerabilities within an application based upon a defined threat model. An

application assessment is intended to identify design failures and unsafe coding practices.

Security-critical issues are commonly encountered in the following areas: authentication,

authorization, session management, data validation, use of cryptography, error handling,

information leakage, and other language-specific issues. During the assessment, WKL

assigned business risk ratings based on our current understanding of the application.

WKL utilizes a comprehensive assessment methodology, providing results with the utmost

accuracy and ensuring representational coverage of risks facing an application or

information system. This assessment methodology is based upon an understanding of the

business use cases, and the types of data stored, processed, or transmitted by a given

system or system component. Once these elements decompose, potential risks affecting

their interaction are evaluated by the assessment team as illustrated by the following

process flow:

10

11

Application Penetration Assessments

The assessment team relies primarily on manual penetration testing to ensure coverage

across the OWASP Top 10 vulnerability classes, as well as assessing other risks resulting

from choices in technology, application logic, and integration between application and

system components or application use cases.

The WKL approach and methodology is not limited to the OWASP Top 10 vulnerability

classes. Instead, it allows the assessment team to adapt testing based upon the risks most

likely to affect the client using the threat model and attack plan defined during the threat

modeling phase of the engagement. The following OWASP Top 10 vulnerability classes are

included in each application penetration assessment:

 Broken Access Control

 Cryptographic Failures

 Injection

 Insecure Design

 Security Misconfiguration

 Vulnerable and Outdated Components

 Identification and Authentication Failures

 Software and Data Integrity Failures

 Security Logging and Monitoring Failures

 Server-Side Request Forgery

The inclusion of manual penetration testing executed during the assessment provides

greater coverage of classes of vulnerabilities that often go undetected by automated

vulnerability assessment tools and dynamic web application security scanners. These

classes include authentication, authorization, session management, cryptographic

weaknesses, and application business logic. Lastly, careful manual execution of the test

cases allows the application security team to identify and closely coordinate test cases that

may be more likely to impact system and service availability, thereby minimizing potential

impact to production systems.

12

Common Attack Vectors Considered

During initial preparation for an application security assessment, common attack vectors are

specified to ensure consistent focus and a comprehensive approach. These provide the

structure for the engagement team's tasks and are reflected in the final reporting. Some

potential attack vectors considered in web-based applications include:

13

Application Testing Findings

Finding: Medium – Sensitive Data in Logs

Description

The iOS application logs sensitive HTTP response data in logs. WKL observed that all API

responses are logged in decrypted format. This bypasses the protection offered by

application layer encryption and does not need a jailbroken environment to be exploited.

Sensitive data, such as [specific data], were found to be exposed. Attackers with physical

access to a device may be able to obtain the sensitive data in logs without needing

credentials.

Impact

Attackers with physical access to devices may be able to obtain sensitive decrypted data

from application logs.

Evidence

The following screenshot shows access and refresh tokens used to authenticate to the

service logged in decrypted format in the console logs.

Figure 1: Console output with access and refresh tokens

14

URL Locations

 URL

Recommendations

Do not log sensitive data. WKL recommends the client review the source code for areas that

make use of a specific function. It may be useful for testing purposes to log requests and

responses, but this functionality as well as debug functionality needs to be removed in

production applications.

Debug log functionality can be controlled at a higher level for test builds, using the debug

preprocessor. This flag can then be disabled in production, to prevent logging. For more

information, please see the following Apple developer blog article and reference URL:

 https://developer.apple.com/library/archive/technotes/tn2347/_index.html

 https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html

https://developer.apple.com/library/archive/technotes/tn2347/_index.html
https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html

15

Finding: Medium – Insecure Storage of MFA

"Remember Me"

Description

A multi-factor authentication (MFA) "remember me" token is stored on the device in an

insecure fashion. When the user logs into the application, they are required to enter an MFA

token via SMS, email, or an authenticator app. To prevent needing to enter an MFA token on

every login, the application allows the user to select if they are using a shared device or a

personal device. The personal device option returns a special token (cookie) that is stored

on the device and submitted along with each login request to validate the MFA step. A

device ID is needed in conjunction with this MFA cookie. The device ID is also stored in an

insecure location on the device, in a plaintext SQLite database. Effectively, if an attacker

recovered this value, they could bypass MFA if they had the user's credentials.

Impact

Attackers with physical access to the device may be able to recover the plaintext data

through forensic techniques or application backups. The data is easily available on jailbroken

devices.

Evidence

The following output shows the deviceID recovered from a SQLite database in the device's

app data folder.

 $ sqlite3 [redacted]
SQLite version [redacted]
Enter ".help" for usage hints.
sqlite> .tables
[TableName] Device User
sqlite> select * from [TableName];
[redacted]

[redacted]
sqlite> select * from Device;
iOS Device (iPhone9,1)|15.8|[redacted]

The following Objection output shows the MFA "remember me" cookie values stored in the

plaintext specific location within the application on iOS:

$ [redacted] on (iPhone: 15.8) [usb] # ios [redacted] get
{
 3DTouchEnabled = false;
 "4.2.1" = 1;

16

 AKLastIDMSEnvironment = 0;
 [redacted]FontSize = 2;
 AddingEmojiKeybordHandled = 1;
 AdditionalTransactionDownload = 30;
 AppleLanguages = (
 en
);
 AppleLanguagesDidMigrate = 19H370;
 ApplePasscodeKeyboards = (
 "en_US",
 emoji

);
 CookieId = "[redacted]";
 INNextFreshmintRefreshDateKey = "[date]";
 INNextHearbeatDate = "[date]";
 InitialTransactionDownload = 90;
 LoginTouchIDEnabled = false;
 NSAllowsDefaultLineBreakStrategy = 1;
 NSInterfaceStyle = macintosh;
 NSLanguages = (
 en
);
 PKKeychainVersionKey = #;
 PKLogNotificationServiceResponsesKey = #;
 PrivacyTimeoutDatetime = "[date]";
 QuickViewEnabled = false;
 RequirePin = false;
 TouchIDEnabled = false;
 "com.apple.content-rating.AppRating" = 1000;
 "com.apple.content-rating.ExplicitBooksAllowed" = 1;
 "com.apple.content-rating.ExplicitMusicPodcastsAllowed" = 0;
 "com.apple.content-rating.MovieRating" = 1000;
 "com.apple.content-rating.TVShowRating" = 1000;
}

The following decrypted HTTP request shows an example of the MFA "remember me"

cookie use. Also, take note of the device ID.

POST /api/[redacted]/V3/MultiFactorLogin HTTP/2
Host: [redacted]
Accept: */*
Content-Type: application/json
Accept-Encoding: [redacted]
User-Agent: [redacted]
Content-Length: 461
Accept-Language: en-US,en;q=0.9
AES: Killer
{'PayloadId' : ‘[redacted]’, 'UserName' : '[redacted]' , 'Password' : '[redacted]' , 'Model' :

'iOS Device (iPhone9,1)' , 'OS' : '15.8' , 'InstallationId' : '[redacted]' , 'Version' :

'4.2.1' , 'UserAgent': '' , 'CookieId' : '[redacted]'}

17

The resulting HTTP response shows an example of the response, indicating that login was

successful.

HTTP/2 200 OK
Cache-Control: no-cache,no-cache, no-store, must-revalidate, pre-check=0, post-check=0, max-

age=0, s-maxage=0
Pragma: no-cache,no-cache
Content-Length: 1511
Content-Type: text/plain; charset=utf-8
Expires: -1,0
Content-Security-Policy: frame-ancestors 'self'
X-Xss-Protection: 1; mode=block
X-Content-Type-Options: nosniff
X-Frame-Options: SAMEORIGIN
X-Permitted-Cross-Domain-Policies: none
Strict-Transport-Security: max-age=31536000; includeSubDomains, preload
Date: [redacted]
AES: Killer
{"access_token":"[redacted]"}

URL Locations

 URL

Recommendations

For any sensitive or moderately sensitive data, ensure that it is stored in the Keychain. The

Keychain provides entitlements for each application so that no other application can access

each other’s keys, except on jailbroken devices. The iOS Keychain provides strong

encrypted storage that uses keys derived by both the user’s device password/passcode and

hardware-based keys that cannot be extracted by attackers. Consider storing both the

device ID and MFA "remember me" cookie in the Keychain.

18

Finding: Low – Hard-Coded Cryptographic Key

Description

The iOS application makes use of a hard-coded cryptographic key. Normally the exposure of

cryptographic material is considered a high severity problem when it can be used to obtain

sensitive data or manipulate critical application functionality. However, in this case, the

severity is considered low due to the consequences of exploitation. [Additional, specific

finding details]. Although the HTTP traffic can be intercepted and decrypted, the TLS layer is

offering confidentiality, integrity, and authenticity. Therefore, MITM attacks are largely

prevented, making the consequences of breaking application-layer encryption a low severity.

However, it should be noted that although the consequences are relatively low, the exposure

is high. The key material and algorithm are the same for all application installs, which means

that, if obtained, this protection is compromised for every device and every user who installs

it from the app store.

Impact

A hard-coded cryptographic key can be obtained by attackers and used to decrypt or encrypt

HTTP payloads at the application layer. Since the key is the same for all application installs,

an attacker can compromise this protection for any and all users of the client mobile

application.

Evidence

Hard-coding a key makes it possible for attackers to extract the key by performing dynamic

instrumentation. The key is also readily available to any internal user with access to the

internal source code. Reverse engineering the application to extract the data from compiled

code is more difficult but possible once the app store encryption is stripped by repackaging

the decrypted binary from memory. The following examples show the key extracted from the

source and from instrumentation.

 The following code snippet shows the hard-coded key located at file path.

 NSString *dataToBase64Id1 = @"[redacted]";

NSString *dataToBase64Id2 = @"[redacted]";
+(NSString*) encrypt:(NSString*)plaintext
{
 @try {
 NSData *objEncryptData = [NSData dataWithData:[plaintext

dataUsingEncoding:NSUTF8StringEncoding]];
 objEncryptData = [objEncryptData AES256EncryptWithKey:dataToBase64Id1

iv:dataToBase64Id2];

 NSString *encrypted = [objEncryptData base64EncodedStringWithOptions:0];
 objEncryptData = nil;

19

 return encrypted;
 }
 @catch (NSException *exception) {
 NSLog(@"Class: %@", TAG);
 NSLog(@"Name: %@", exception.name);
 NSLog(@"Error: %@", exception.reason);
 [LogError logError:[[exception.name stringByAppendingString:@" : "]

stringByAppendingString:exception.reason] class:TAG];
 return @"";
 }
 @finally {

 }
}
+(NSString*) decrypt:(NSString*)encrypted
{
 @try {

 NSData *decodedData = [[NSData alloc] initWithBase64EncodedString:encrypted options:0];

 NSData *objDecryptData = [decodedData AES256DecryptWithKey:dataToBase64Id1

iv:dataToBase64Id2];
 NSString *decrypted = [[NSString alloc] initWithData:objDecryptData

encoding:NSUTF8StringEncoding];

 objDecryptData = nil;
 return decrypted;
 }
 @catch (NSException *exception) {
 NSLog(@"Class: %@", TAG);
 NSLog(@"Name: %@", exception.name);
 NSLog(@"Error: %@", exception.reason);
 [LogError logError:[[exception.name stringByAppendingString:@" : "]

stringByAppendingString:exception.reason] class:TAG];
 return @"";
 }
 @finally {

The following text shows the hard-coded key and decrypted HTTP data returned from

dynamic instrumentation.

agent) Registering job 607982. Type: ios-crypto-monitor
[redacted] on (iPhone: 15.8) [usb] # (agent) [redacted] [CCCryptorUpdate] (
 dataIn : [redacted]
 dataOut : [redacted]
)
(agent) [redacted] [CCCryptorFinal] (
 dataOut : [redacted]
)
(agent) [redacted] [CCCrypt] (
 op : [redacted]

20

 alg : [redacted]
 options : [redacted]
 keyLength : 32
 key : [redacted]
 iv : [redacted]
 dataIn : [redacted]
 dataOut : [redacted]
)
(agent) [redacted] [CCCryptorUpdate] (
 dataIn : {'PayloadId' : '[redacted]' , 'UserName' : '[redacted]' , 'Password' : '[redacted]' ,

'Model' : 'iOS Device (iPhone9,1)' , 'OS' : '15.8' , 'InstallationId' : ‘[redacted]' ,

'Version' : '4.2.1' , 'UserAgent': '' , 'CookieId' : '[redacted]'}
 dataOut : [redacted]
)
(agent) [redacted] [CCCryptorFinal] (
 dataOut : [redacted])

URL Locations

 Source Code: location

 API host: location

Recommendations

Do not hard code cryptographic key material. Hard-coded keys are the same for all

instances of an installation and affect all users of an application if extracted. Extraction of

key material requires advanced techniques but is a very feasible task. Obfuscation is not a

solution, because obfuscation is ultimately a form of encoding that can be defeated,

especially through runtime manipulation.

If this protection is to be kept, consider implementing an asymmetric key exchange algorithm

such as Elliptic Curve Diffie-Hellman (ECDH). Data can either be sent using pure

asymmetric key cryptography, or the key-exchange can be used to establish a symmetric

key, which is unique and securely randomly generated per-session. For more information,

please visit the following URL:

 https://cryptobook.nakov.com/asymmetric-key-ciphers/ecdh-key-exchange

https://cryptobook.nakov.com/asymmetric-key-ciphers/ecdh-key-exchange

21

Finding: Low – TLS Configuration Weaknesses

Description

WKL identified TLS configuration weaknesses on the target server. These weaknesses

include outdated TLS versions TLS1.0 and TLS1.1 and the support for medium strength

cipher suites. These vulnerabilities can expose the server to potential security risks and

compromise the confidentiality and integrity of data transmitted over the network.

TLS 1.2 or higher is recommended, although TLS 1.3 is faster and more secure than TLS

1.2. One of the changes that makes TLS 1.3 faster is an update to the way a TLS

handshake works: TLS handshakes in TLS 1.3 only require one round trip (or back-and-forth

communication) instead of two, shortening the process by a few milliseconds. And in cases

when the client has connected to a website before, the TLS handshake will have zero round

trips. This makes HTTPS connections faster, cutting down on latency and improving the

overall user experience.

Many of the major vulnerabilities in TLS 1.2 had to do with older cryptographic algorithms

that were still supported. TLS 1.3 drops support for these vulnerable cryptographic

algorithms and, as a result, it is less vulnerable to cyber attacks.

Impact

Attackers on shared networks, who are also in the man-in-the-middle position, may be able

to downgrade (or initially establish) a connection to a weak or vulnerable TLS version or

cipher suite. This can allow attackers to decrypt otherwise encrypted data. The opportunity

for this attack is lessened since, although the server supports vulnerable versions, the iOS

client will negotiate TLS 1.2 or higher.

Evidence

To validate the SSL/TLS configuration weaknesses, the sslyze tool was used with the

following command.

sslyze [redacted]

The output of the sslyze command revealed the vulnerabilities and weaknesses in the TLS

configuration. The output below shows the command execution and the resulting

vulnerabilities.

CHECKING CONNECTIVITY TO SERVER(S)

 [redacted] => [redacted]

22

SCAN RESULTS FOR [redacted] - [redacted]
--
* Certificates Information:
 Hostname sent for SNI: [redacted]
 Number of certificates detected: 1

 Certificate #0 (_RSAPublicKey)
 SHA1 Fingerprint: [redacted]
 Common Name: * [redacted]
 Issuer: [redacted]
 Serial Number: [redacted]
 Not Before: [redacted]
 Not After: [redacted]
 Public Key Algorithm: _RSAPublicKey
 Signature Algorithm: sha256
 Key Size: [redacted]
 Exponent: [redacted]
 SubjAltName - DNS Names: ['* [redacted], '[redacted]']
 Certificate #0 - Trust
 Hostname Validation: OK - Certificate matches server hostname
 Android CA Store (13.0.0_r9): OK - Certificate is trusted
 Apple CA Store (iOS 16, iPadOS 16, macOS 13, tvOS 16, and watchOS 9):OK - Certificate is

trusted
 Java CA Store (jdk-13.0.2): OK - Certificate is trusted
 Mozilla CA Store (2022-12-11): OK - Certificate is trusted
 Windows CA Store (2023-02-19): OK - Certificate is trusted
 Symantec 2018 Deprecation: OK - Not a Symantec-issued certificate
 Received Chain: * [redacted] --> Entrust Certification Authority - L1K
 Verified Chain: * [redacted] --> Entrust Certification Authority - L1K

--> Entrust Root Certification Authority - G2
 Received Chain Contains Anchor: OK - Anchor certificate not sent
 Received Chain Order: OK - Order is valid
 Verified Chain contains SHA1: OK - No SHA1-signed certificate in the verified

certificate chain
 Certificate #0 - Extensions
 OCSP Must-Staple: NOT SUPPORTED - Extension not found
 Certificate Transparency: OK - 3 SCTs included
 Certificate #0 - OCSP Stapling
 OCSP Response Status: SUCCESSFUL
 Validation w/ Mozilla Store: OK - Response is trusted
 Responder Name: CN=Entrust Validation Authority,O=Entrust\, Inc.,C=US
 Cert Status: GOOD
 Cert Serial Number: [redacted]
 This Update: [redacted]
 Next Update: [redacted]
* SSL 2.0 Cipher Suites:
 Attempted to connect using 7 cipher suites; the server rejected all cipher suites.
* SSL 3.0 Cipher Suites:
 Attempted to connect using 80 cipher suites; the server rejected all cipher suites.
* TLS 1.0 Cipher Suites:
 Attempted to connect using 80 cipher suites.
 The server accepted the following 4 cipher suites:
 TLS_RSA_WITH_AES_256_CBC_SHA 256
 TLS_RSA_WITH_AES_128_CBC_SHA 128
 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA 256 ECDH: secp384r1 (384 bits)
 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA 128 ECDH: prime256v1 (256 bits)
 The group of cipher suites supported by the server has the following properties:
 Forward Secrecy OK - Supported

23

 Legacy RC4 Algorithm OK - Not Supported

* TLS 1.1 Cipher Suites:
 Attempted to connect using 80 cipher suites.
 The server accepted the following 4 cipher suites:
 TLS_RSA_WITH_AES_256_CBC_SHA 256
 TLS_RSA_WITH_AES_128_CBC_SHA 128
 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA 256 ECDH: secp384r1 (384 bits)
 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA 128 ECDH: prime256v1 (256 bits)
 The group of cipher suites supported by the server has the following properties:
 Forward Secrecy OK - Supported
 Legacy RC4 Algorithm OK - Not Supported

* TLS 1.2 Cipher Suites:
 Attempted to connect using 156 cipher suites.
 The server accepted the following 14 cipher suites:
 TLS_RSA_WITH_AES_256_GCM_SHA384 256
 TLS_RSA_WITH_AES_256_CBC_SHA256 256
 TLS_RSA_WITH_AES_256_CBC_SHA 256
 TLS_RSA_WITH_AES_128_GCM_SHA256 128
 TLS_RSA_WITH_AES_128_CBC_SHA256 128
 TLS_RSA_WITH_AES_128_CBC_SHA 128
 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 256 ECDH: secp384r1 (384 bits)
 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 256 ECDH: secp384r1 (384 bits)
 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA 256 ECDH: secp384r1 (384 bits)
 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 128 ECDH: prime256v1 (256 bits)
 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 128 ECDH: prime256v1 (256 bits)
 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA 128 ECDH: prime256v1 (256 bits)
 TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 256 DH (2048 bits)
 TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 128 DH (2048 bits)
 The group of cipher suites supported by the server has the following properties:
 Forward Secrecy OK - Supported
 Legacy RC4 Algorithm OK - Not Supported

* TLS 1.3 Cipher Suites:
 Attempted to connect using 5 cipher suites; the server rejected all cipher suites.
* Deflate Compression:
 OK - Compression disabled
* OpenSSL CCS Injection:
 OK - Not vulnerable to OpenSSL CCS injection
* OpenSSL Heartbleed:
 OK - Not vulnerable to Heartbleed
* ROBOT Attack:
 OK - Not vulnerable.
* Session Renegotiation:
 Client Renegotiation DoS Attack: OK - Not vulnerable
 Secure Renegotiation: OK - Supported
* Elliptic Curve Key Exchange:
 Supported curves: X25519, prime256v1, secp384r1
 Rejected curves: X448, prime192v1, secp160k1, secp160r1, secp160r2,

secp192k1, secp224k1, secp224r1, secp256k1, secp521r1, sect163k1, sect163r1, sect163r2,

sect193r1, sect193r2, sect233k1, sect233r1, sect239k1, sect283k1, sect283r1, sect409k1,

sect409r1, sect571k1, sect571r1
SCANS COMPLETED IN 38.736273 S

COMPLIANCE AGAINST MOZILLA TLS CONFIGURATION
--

24

 Checking results against Mozilla's "MozillaTlsConfigurationEnum.INTERMEDIATE" configuration.

See https://ssl-config.mozilla.org/ for more details.
 [redacted]: FAILED - Not compliant.
 * maximum_certificate_lifespan: Certificate life span is 396 days, should be less than

366.
 * tls_versions: TLS versions {'TLSv1.1', 'TLSv1'} are supported, but should be rejected.
 * ciphers: Cipher suites {'TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA',

'TLS_RSA_WITH_AES_256_CBC_SHA', 'TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256',

'TLS_RSA_WITH_AES_128_GCM_SHA256', 'TLS_RSA_WITH_AES_256_CBC_SHA256',

'TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384', 'TLS_RSA_WITH_AES_256_GCM_SHA384',

'TLS_RSA_WITH_AES_128_CBC_SHA256', 'TLS_RSA_WITH_AES_128_CBC_SHA',

'TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA'} are supported, but should be rejected.

The output clearly indicates the presence of TLS configuration weaknesses, including the

support for outdated TLS versions and medium strength cipher suites.

Recommendations

To mitigate the SSL/TLS configuration weaknesses, the following recommendations should

be implemented:

1. Update TLS Version: Disable support for outdated TLS versions TLS v1.0 and TLS

v1.1 and enforce the use of newer and more secure TLS versions (e.g., TLS v1.2 or

TLS v1.3).

2. Strong Cipher Suites: Review and update the server's cipher suite configuration to

only allow strong cryptographic algorithms and eliminate the support for medium

strength cipher suites.

Regularly monitor and update the SSL/TLS configuration to stay up to date with best

practices and industry standards. By implementing these recommendations, the server can

enhance its SSL/TLS security and protect sensitive data transmitted over the network. For

more information, please visit the following URLs:

 https://ssl-config.mozilla.org/

 https://owasp.org/www-project-web-security-testing-guide/v41/4-

Web_Application_Security_Testing/09-Testing_for_Weak_Cryptography/01-

Testing_for_Weak_SSL_TLS_Ciphers_Insufficient_Transport_Layer_Protection

 https://www.cloudflare.com/learning/ssl/why-use-tls-1.3/

https://ssl-config.mozilla.org/
https://owasp.org/www-project-web-security-testing-guide/v41/4-Web_Application_Security_Testing/09-Testing_for_Weak_Cryptography/01-Testing_for_Weak_SSL_TLS_Ciphers_Insufficient_Transport_Layer_Protection
https://owasp.org/www-project-web-security-testing-guide/v41/4-Web_Application_Security_Testing/09-Testing_for_Weak_Cryptography/01-Testing_for_Weak_SSL_TLS_Ciphers_Insufficient_Transport_Layer_Protection
https://owasp.org/www-project-web-security-testing-guide/v41/4-Web_Application_Security_Testing/09-Testing_for_Weak_Cryptography/01-Testing_for_Weak_SSL_TLS_Ciphers_Insufficient_Transport_Layer_Protection
https://www.cloudflare.com/learning/ssl/why-use-tls-1.3/

25

Finding: Low – Lack of Anti-Instrumentation/Jailbreak

Detection

Description

The application fails to prevent itself from performing integrity checks, running in hostile

environments, or attempting to instrument the process at runtime. Typically, iOS applications

do not need to implement these protections in a standard iOS environment, as they are

protected by app container segregation, SELinux file system permissions, and cryptographic

signing and verification through trusted sources via the app store. However, on a jailbroken

device, these protections all break down as root access can be granted to any process. As a

defense-in-depth strategy, it is best to detect hostile environments, along with changes to the

application integrity and attempts to manipulate the application through dylib injection (a

common way of instrumentation of the running process).

Impact

If the application is run in a hostile environment, any sensitive data stored on the device,

held in memory, or sent across a network can be captured by attackers.

Evidence

The screenshot below shows the client app running alongside the Sileo repository

application and Palera1n jailbreak app on a jailbroken iOS 15.8 device.

26

Figure 2: [Client] app running alongside Sileo and Palera1n

URL Locations

 URL

Recommendations

WKL recommends enabling integrity, instrumentation, and jailbreak protections. These can

be performed in a number of different ways. For instance, an application can detect the

presence of a jailbroken environment on iOS by attempting to escalate to a root shell,

attempting a method not allowed in jailed environments such as “fork()”, or detecting the

presence of files and apps that indicate a jailbroken environment. Please see the following

guide for more information:

 https://github.com/OWASP/owasp-mastg/blob/master/Document/0x06j-Testing-

Resiliency-Against-Reverse-Engineering.md

https://github.com/OWASP/owasp-mastg/blob/master/Document/0x06j-Testing-Resiliency-Against-Reverse-Engineering.md
https://github.com/OWASP/owasp-mastg/blob/master/Document/0x06j-Testing-Resiliency-Against-Reverse-Engineering.md

27

Finding: Low – Lack of Certificate Pinning

Description

The application fails to perform certificate pinning. Certificate pinning is an additional layer of

protection, on top of TLS certificate validation, that ensures the authenticity of the server. In

an instance where a certificate authority has been compromised, a malicious certificate

could be issued by a trusted authority, allowing attackers to silently perform man-in-the-

middle (MITM) attacks on otherwise encrypted connections. This protection is useful as a

defense-in-depth strategy.

Impact

If a certificate authority (CA) is compromised, attackers may be able to perform man-in-the-

middle attacks without the end user being notified of a potential malicious connection. When

attackers compromise CAs they can issue certificates that are signed by a trusted CA and

pass certificate validation without needing to install on a client.

Evidence

The following HTTP request shows data intercepted and decrypted via an intercepting proxy.

 POST /api/[redacted]/[redacted] HTTP/2

Host: [redacted]
Accept: */*
Content-Type: application/json
Accept-Encoding: gzip, deflate, br
Authorization: Bearer [redacted]
User-Agent: [redacted]
Accept-Language: en-US,en;q=0.9
Content-Length: 199
AES: Killer
{'PayloadId' : '[redacted]' , 'TrackingId' : '[redacted]' , 'Key' : '[redacted]' , 'Version' :

'[redacted]' , 'DeviceId' : '[redacted]' , 'CreateCookie' : 'True'}
HTTP/2 200 OK
Cache-Control: no-cache,no-cache, no-store, must-revalidate, pre-check=0, post-check=0, max-age=0,

s-maxage=0
Pragma: no-cache,no-cache
Content-Length: 291
Content-Type: text/plain; charset=utf-8
Expires: -1,0
Content-Security-Policy: frame-ancestors 'self'
X-Xss-Protection: 1; mode=block
X-Content-Type-Options: nosniff
X-Frame-Options: SAMEORIGIN
X-Permitted-Cross-Domain-Policies: none
Strict-Transport-Security: max-age=31536000; includeSubDomains, preload
Date: [date]
AES: Killer

28

{"CallId":"[redacted]","status_message":"","status_code":0,"cookie_id":"[redacted]","security_stamp

":"[redacted]","session_id": [redacted]}

The following HTTP response shows data intercepted and decrypted via an intercepting

proxy.

HTTP/2 200 OK
Cache-Control: no-cache,no-cache, no-store, must-revalidate, pre-check=0, post-check=0, max-age=0,

s-maxage=0
Pragma: no-cache,no-cache
Content-Length: 291
Content-Type: text/plain; charset=utf-8
Expires: -1,0
Content-Security-Policy: frame-ancestors 'self'
X-Xss-Protection: 1; mode=block
X-Content-Type-Options: nosniff
X-Frame-Options: SAMEORIGIN
X-Permitted-Cross-Domain-Policies: none
Strict-Transport-Security: max-age=31536000; includeSubDomains, preload
Date: [date]
AES: Killer
{"CallId":"[redacted]","status_message":"","status_code":0,"cookie_id":"[redacted]","security_stamp

":"[redacted]","session_id": [redacted]}

URL Locations

 URL

Recommendations

WKL recommends implementing certificate pinning. Certificate pinning can be accomplished

in several ways. For instance, the fingerprint (Sha256 hash) of a certificate can usually be

used to uniquely identify it. It’s important to not only validate the authenticity of the certificate

but also the fingerprint. This makes certificate pinning an additional step to TLS certificate

validation. For more information, please visit the following guide for concepts and

implementation:

 https://owasp.org/www-community/controls/Certificate_and_Public_Key_Pinning

https://owasp.org/www-community/controls/Certificate_and_Public_Key_Pinning

29

Appendix A: Artifacts

This appendix details the artifacts that may have been generated or utilized during the

mobile application penetration testing process. To maintain the security and integrity of the

environment, it may be necessary for the following actions to be taken post-assessment.

Test User Accounts:

 Users:

o [test user]

o [test user]

o [test user]

 Action Recommended: Deactivate and delete the test accounts for WKL.

API environment Tested:

 Environment: [environment]

 Action Recommended: Verify that no test artifacts remain and that endpoints are

secured post-testing.

 Action Recommended: Review server logs for API endpoints to confirm no

unintentional changes or sensitive data was logged.

By addressing the listed artifacts, the web application's security stance is further solidified.

Should any additional artifacts or concerns have been identified during the assessment,

please refer to the detailed assessment report for comprehensive guidance and

recommended remediation actions.

30

Appendix B: Risk Profile

During the mobile application assessment, two medium and four low vulnerabilities were

identified that could pose a risk to users and [client]'s security. These findings serve to

provide valuable insights into the security posture of the application. It is recommended that

a further analysis be conducted to determine the severity of the detected vulnerabilities and

the potential impact of a compromise. This should include an evaluation of the likelihood of

exploitation and the potential repercussions to better inform risk management strategies and

remediation prioritization.

Upon completion of the technical segment of the assessment, consultants at White Knight

Labs calculated the "Risk Score." The subsequent chart explains how White Knight Labs

assigns these Risk Score levels. The definitions are influenced by the Penetration Testing

Execution Standards (PTES) Information Security Risk Rating Scale. White Knight Labs

employs the industry-standard risk calculation method, multiplying the potential impact by

the likelihood associated with each finding, considering various criteria. The scoring is also

based on the engineers' professional opinion and the impact of the issues presented.

Rating Likelihood Impact

Critical Almost Certain to Occur: Probability greater than

90%

Severe: Catastrophic financial loss,

long-term reputational damage,

potential legal consequences,

potential loss of life

High Likely to Occur: Probability between 60% and 90% Major: Significant financial loss,

substantial disruption to operations,

potential legal scrutiny

Medium Possible but Not Likely: Probability between 30%

and 60%

Moderate: Noticeable financial loss,

temporary disruption to some

functions, possible customer

dissatisfaction

Low Unlikely to Occur: Probability less than 30% Minor: Minimal financial or

operational impact, easily

recoverable, limited customer or

stakeholder concern

31

Below are descriptions of each vulnerability classification level:

Critical Risk Findings: These represent vulnerabilities that grant remote attackers root or

administrator capabilities. With this degree of vulnerability, the entire host could be

compromised. Critical risk findings include vulnerabilities that allow remote attackers full read

and write access to the file system, as well as the ability to remotely execute commands as a

root or administrator user. The existence of backdoors or malicious code also falls under this

category.

High-Risk Findings: These vulnerabilities grant attackers limited privileges, not extending to

remote administrator or root user access. High-risk findings may enable attackers to partially

access file systems, such as having full read access without corresponding write

permissions. Any vulnerabilities that reveal sensitive data, like session details or personal

information (e.g., PII or credit card data), are also considered High-risk.

Medium Risk Findings: These vulnerabilities allow attackers to access specific information

on the host, including security configurations. Such exposures could lead to potential misuse

by attackers. Medium risk findings might encompass partial file content disclosure, access to

particular host files, directory browsing, exposure of filtering protocols and security

measures, susceptibility to DoS attacks, or unauthorized exploitation of system or application

functions.

Low Risk Findings: These findings reveal information that could facilitate more targeted

attacks. Examples include directory structures, account names, network addresses, or

internal data about other systems.

Informational Findings: These do not necessarily constitute vulnerabilities but include

information that the application owner should review and analyze. This category highlights

details that may not pose an immediate threat but warrant attention for comprehensive

security awareness.

By categorizing these findings, White Knight Labs provides an organized and clear

assessment of the risk landscape, based on the professional opinions of our engineers and

the impact of the identified issues.

	Executive Summary
	Scoping and Rules of Engagement
	Overall Risk Rating: Moderate

	Summary of Findings
	Application Testing Methodology
	Application Penetration Assessments
	Common Attack Vectors Considered

	Application Testing Findings
	Finding: Medium – Sensitive Data in Logs
	Finding: Medium – Insecure Storage of MFA "Remember Me"
	Finding: Low – Hard-Coded Cryptographic Key
	Finding: Low – TLS Configuration Weaknesses
	Finding: Low – Lack of Anti-Instrumentation/Jailbreak Detection
	Finding: Low – Lack of Certificate Pinning

	Appendix A: Artifacts
	Appendix B: Risk Profile

